ECONOMICAL ORDERING STRATEGIES FOR PERISHABLE ITEMS UNDER CONDITIONS OF DEMAND DEPENDENT FINITE PRODUCTION RATE AND PARTIAL BACKORDERING

Bhaskar Bhaula
Department of Mathematics
National Institute of Science and Technology
Berhampur, Odisha, India
Phone No : +919861352320

ABSTRACT
The present paper derives an optimal policy for perishable product under conditions of price dependent demand, demand dependent production rate and partial backordering which depends on the length of waiting time and a lot sale. In a competitive market shortage acts as barrage for costumers’ inflow. So in this article to avoid their dissatisfaction of waiting for long duration, a portion of the total shortage has been recovered in each cycle through backlogging process. In the inventory literature generally shortage occurs after accumulation of inventory at early stage. But in the present model, a new approach shortage followed by inventory has been deliberated than the inventory followed by shortage. In addition to the new shortage approach a demand dependent production rate has also been incorporated rather than a constant production rate taken in various models previously. Therefore the article was found to be more profitable than previous models which have been reflected through tabulated results. Hence to make a company all time profitable, the production rate of the finished goods should be under the control of the management depending on the costumers’ inflow. An algorithm has been used to obtain the optimum results. The model is studied extensively numerically taking different values of varies parameters involved in this model vide sensitivity analysis.

Keywords: Price-dependent, demand, Demand dependent Production, Deterioration, Inventory, Partial back-ordering, Lot sale.

INTRODUCTION
It is a natural phenomenon that each item in any inventory has been deteriorated spontaneously in course of time. The products like food stuffs, blood bank,
medicines, chemicals, radioactive substances etc. deteriorate sufficiently during their normal storage period. So while developing an optimal inventory policy for such perishable items, the loss of inventory due to deterioration may not be ignored. Hence we have considered a deterioration factor in your model.

In supermarket, it is being observed that the demand of items go up and down according to the falling and rising of prices respectively. So demand is a price-dependent variable. As the demand for the product is a price instigating, hence pricing and lot sizing decisions are very important for perishable items. Shortage is also an unavoidable situation happening in a market from time to time. It is a barrage for customers’ inflow. Therefore the backlogging is a needful protection to avoid the loss of cost towards deterioration of unpreserved items. Hence perishable and backlogging are complementary conditions. Researchers have developed their inventory models taking backlogging rate to be linearly dependent on the total number of customers in the waiting line. Moreover backlogging rate depends on the waiting time spent for the arrival of the next lot. To get an up to date idea, we go through the articles of Montgomery et al [1], Park [2], Mak [3], Chang and Dye [4]. This article assumes that the partial ordering depends on the waiting time of the backlogging. It is a better alternate of the customers’ unwillingness to wait for backlogging. In this regard, we referred the inventory models dealing with perishable product under conditions of finite production, fixed demand and backlogging are Raafat [6], Kim and Hwang [7], Hwang et al [8], Rubin et al [9], Burwell [10]. The optimal policy for a perishable product with shortages was considered by Giri et al [11], Jalan and Choudhury [12]. Optimal selling price and lot size with time varying deterioration with partial backlogging was discussed by Sena [13].

Most of the models discussed above have been formulated as the cost minimization problem incorporating backorders and lot sale cost. Abad [5] has proved the existence of global cost minimization problem. Lue [14] has developed a general model for finding of optimal lot size and maximum back order level. In the above models dealt with the techniques that inventory followed by shortages but the present model deals with shortages followed by inventory which leads a comparatively better result. In addition to we have also incorporated a demand dependent production rate rather than a fixed production rate reflected in varies previous models. The model is well discussed and solved optimally using Mathematica and studied through sensitivity analysis using numerical examples.

ASSUMPTIONS AND NOTATIONS

For the simplicity of the model, we have used the following notations and assumptions.

\[p = \text{Selling price per unit}. \]
\(D(p) \) = Demand rate (units / period).
\(\lambda D \) = Production rate (units/period),

Where \(\lambda > 1 \),

\(\theta \) = Constant deterioration rate, \(0 < \theta < 1 \).
\(\eta \) = waiting time of the customer.

\(B(\eta) = \frac{K_0}{1 + K_0 \eta} < 1 \) is the fraction of the shortage backlogged,

\(0 < K_0 < 1 \), \(0 < K_1 < 1 \).

\(I(t) \) = Instantaneous inventory level.

\(T_0 \) = Stock out time span.

\(T_1 \) = Shortage recovering time span.

\(T_2 \) = Time at which the inventory level raises to peak level.

\(T \) = Cycle length.

\(h \) = Inventory carrying cost per unit period.

\(v \) = Unit cost.

\(Q \) = Lot-size ordering quantity.

\(D' = \frac{dD(p)}{dp} < 0, \forall p \in (0, \infty) \).

Marginal revenue \(= \frac{d[pD(p)]}{dp} = p + D' > 0 \), strictly increasing function of \(p \), hence \(\frac{1}{D(p)} \) is a convex function of \(p \).

A single inventory is deliberated over an infinite planning horizon.

Lead time is taken to be zero. Shortage is allowed.

MATHEMATICAL FORMULATION

The cycle starts with zero inventories and shortage is accumulated during the interval \([0, T_0]\). The production begins at \(t = T_0 \) to meet the current demand along with a portion of the backlogged demand. At time \(T_1 \), the shortage has been adjusted and positive level of inventory starts to build up. The stopping of the production at time \(T_2 \) results the declining of the inventory level. Consequently inventory level ends with zero stock after the cycle \(T \). The pictorial behavior of the inventory cycle is depicted in fig. 1.

To resolve the discussion mathematically the following differential equations are taken into the contemplation.
Solving the above differential equations from (1) to (4) under the given boundary conditions, we have

\[
\frac{dI(t)}{dt} = -DB(T_0 - t), \quad 0 \leq t \leq T_0, \quad I(0) = 0, \quad (1)
\]

\[
\frac{dI(t)}{dt} = D(\lambda - 1), \quad T_0 \leq t \leq T_1, \quad I(T_1) = 0, \quad (2)
\]

\[
\frac{dI(t)}{dt} + \theta I(t) = D(\lambda - 1), \quad T_1 \leq t \leq T_2, \quad I(T_1) = 0, \quad (3)
\]

\[
\frac{dI(t)}{dt} + \theta I(t) = -D, \quad T_2 \leq t \leq T, \quad I(T) = 0. \quad (4)
\]

Since the point of intersections of the trajectories of equations (5) and (6) is at \(t = T_0 \).

Thus, \(-\frac{DK}{K_0} \ln(1 + K_2 T_0) = D(\lambda - 1)(T_0 - T_1)\)

\[
T_1 = T_0 + \frac{K_0 \ln(1 + K_2 T_0)}{K_0(\lambda - 1)} \quad (9)
\]
Equating the common values of equations (7) and (8) at $t = T_2$, we have

$$\frac{D(\lambda - 1)}{\theta} \left[1 - e^{\theta(T_2 - T_1)} \right] = \frac{D}{\theta} \left[e^{\theta(T - T_1)} - 1 \right]$$

(10)

On simplification, we have

$$T_2 - T_1 = \frac{1}{\theta} \ln \left[1 + \frac{1}{\lambda} \left(e^{\theta(T - T_1)} - 1 \right) \right]$$

(11)

Since the production of the unit is within the interval $[T_0, T_2]$, hence the lot-size $Q = \lambda D(T_2 - T_0)$.

The revenue collected by selling the production in the interval $[T_0, T]$ is

$$pD[\lambda(T_1 - T_0) + (T - T_1)]$$

As the production of the unit is within the time $[T_0, T_2]$, hence the manufacturing cost of the quantity of the material is

$$Qv = D\lambda v(T_2 - T_0)$$

(12)

As $[T_2, T_1]$ is the production space where the positive inventory cycle is available and $[T_1, T]$ is demand time span when there is no shortage. Hence the number of deteriorated units throughout the positive inventory time span is the difference of the production volumes and demand quantities during this interval.

Hence the deterioration cost is

$$Nu = vD[\lambda(T_2 - T_1) - (T - T_1)]$$

(13)

Where N is the number of deteriorated units.

Since the stock is available throughout the interval $[T_1, T]$, hence the holding cost in this gap is

$$H = h \int_{T_1}^{T} l(t) \, dt$$

$$= \frac{hD(\lambda - 1)}{\theta} \int_{T_1}^{T} \left[1 - e^{\theta(T_2 - t)} \right] dt + \frac{hD}{\theta} \int_{T_1}^{T} \left[e^{\theta(T - t)} - 1 \right] dt$$

$$= \frac{hD(\lambda - 1)}{\theta} \left[T_2 - T_1 + \frac{e^{\theta(T_2 - T_1) - 1}}{\theta} \right] - \frac{hD}{\theta} \left[T - T_2 + \frac{1 - e^{\theta(T_2 - T_1)}}{\theta} \right]$$

(14)

The profit of the entire cycle $[0, T]$ is $F(p, T_0, T) = \text{Selling revenue} - \text{production cost} - \text{deterioration cost} - \text{holding cost} - \text{set up cost}$.

Thus,

$$F(p, T_0, T) = \frac{D(\lambda - 1)(p - v) \ln(1 + K_1 T_1)}{K_1(\lambda - 1)} + \frac{D(T - T_1)(p + v + \frac{h}{\theta})}{K_1(\lambda - 1)}$$
As $[T_2, T_1]$ is the production interval where the positive inventory cycle is available and $[T_1, T]$ is demand time span when there is no shortage.

Average profit per cycle is

$$\Pi(p, T_0, T) = \frac{F(p, T_0, T)}{T}$$

Here we have to maximize $\Pi(p, T_0, T)$ under the conditions

$$T_0 \geq 0$$

$$T \geq T_1$$

$p \geq v$ such that p is a decision variable.

Algorithm for optimization

When the selling price p is a decision variable and $\Pi(p, T_0, T)$ is not a pseudo-concave function then the profit function $\Pi(p, T_0, T)$ may have multiple local maxima. Let $\Pi(p/T_0, T)$ represents $\Pi(p, T_0, T)$ when T and T_0 are fixed. In order to maximize the complicated unconstrained problem $\Pi(p, T_0, T)$, we have used standard non-linear programming software Mathematica. The Algorithm for the solution of the problem is given below.

Step 1 Let $p = p_1$ where p_1 represents some value of p.

Step 2 For this optimum, let $T_0 = T_0^*$ and $T = T^*$

Step 3 Let the optimum result $T_0 = T_0^*$ and $T = T^*$ maximizes $F(p/T_0, T)$ locally. Let $F(p/T_0, T)$ be maximum for $p = p^*$.

Step 4 Taking this $p = p^*$ repeated the steps 2 and 3 till $\Pi(p, T_0, T)$ attains local maxima. This procedure has repeated several times taking various values of p till it attains global maxima.

Numerical example

Suppose $(p) = 1,600,000 p^{-4}$, $v = 6.3$ / unit, $A = 1000$ / production run, $h = 1$ / unit/week, $\theta = 0.2$, $K_0 = 0.9$, $K_1 = 0.1$ and $\lambda = 2.4$
The optimum result was found to be $p = 8.49999$, $T_0 = 7.13$, $T = 11.002$.

With help of these solutions we also obtained

$T_1 = 10.59015$, $T_2 = 10.7659$, $Q = 2674.66$, $\prod (p, T_0, T) = 438.45882$.

A comparative study between fixed production rate and a demand dependent production rate have been summarized at the table-1 under identical numerical data.

Table 1 Optimum Value

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Variable rate</th>
<th>Production rate</th>
<th>Remarks (Present model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>8.49999</td>
<td>7.87487</td>
<td>Sells at higher price</td>
</tr>
<tr>
<td>T_0</td>
<td>7.162</td>
<td>7.49945</td>
<td>Production starts earlier</td>
</tr>
<tr>
<td>T_1</td>
<td>10.63415</td>
<td>11.0877</td>
<td>Backlog clears earlier</td>
</tr>
<tr>
<td>T_2</td>
<td>10.79507</td>
<td>11.20231</td>
<td>Production stops earlier</td>
</tr>
<tr>
<td>T</td>
<td>11.011</td>
<td>11.35886</td>
<td>Cycles repeat quickly</td>
</tr>
<tr>
<td>Q</td>
<td>2672.58</td>
<td>3702.86</td>
<td>Orders less quantities</td>
</tr>
<tr>
<td>N_d</td>
<td>2.56182</td>
<td>1.79165</td>
<td>Deteriorating quantity is more</td>
</tr>
<tr>
<td>I_{max}</td>
<td>67.95496</td>
<td>66.64</td>
<td>Production stops at higher inventory</td>
</tr>
<tr>
<td>Π</td>
<td>438.514</td>
<td>422.325</td>
<td>About 4% more profit</td>
</tr>
<tr>
<td>$T_2 - T_1$</td>
<td>0.16092</td>
<td>0.27116</td>
<td>Inventory available for less time</td>
</tr>
<tr>
<td>$T_1 - T_0$</td>
<td>3.63307</td>
<td>3.58825</td>
<td>Waiting time of the customer is less</td>
</tr>
<tr>
<td>D</td>
<td>306.51118</td>
<td>416.05085</td>
<td>Less demand as price is higher</td>
</tr>
<tr>
<td>R</td>
<td>735.62683</td>
<td>1000</td>
<td>Less production quantity makes more profit</td>
</tr>
</tbody>
</table>

In any business community a four percent more profit is not a small achievement. It is summarized that the present article is seemed to be a superior model in all respect due to induction of a demand dependent production rate rather than a fixed production rate taken in varies previous models.
Table 2 Sensitivity analysis

<table>
<thead>
<tr>
<th>(h)</th>
<th>(T_0)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(\lambda)</th>
<th>(\nu)</th>
<th>(K_0)</th>
<th>(K_1)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7.1200</td>
<td>10.5764</td>
<td>10.76122</td>
<td>11.009</td>
<td>8.50010</td>
<td>2678.566</td>
<td>306.50974</td>
<td>735.63338</td>
</tr>
<tr>
<td>1.0</td>
<td>7.1620</td>
<td>10.63415</td>
<td>10.79507</td>
<td>11.011</td>
<td>8.49999</td>
<td>2672.580</td>
<td>306.51118</td>
<td>735.62683</td>
</tr>
<tr>
<td>1.5</td>
<td>7.1999</td>
<td>10.68623</td>
<td>10.81937</td>
<td>11.000</td>
<td>8.43000</td>
<td>2752.111</td>
<td>316.81788</td>
<td>760.36291</td>
</tr>
<tr>
<td>2.3</td>
<td>6.9930</td>
<td>10.66373</td>
<td>10.83268</td>
<td>11.060</td>
<td>8.50000</td>
<td>2706.868</td>
<td>306.50970</td>
<td>704.97230</td>
</tr>
<tr>
<td>2.4</td>
<td>7.1620</td>
<td>10.63415</td>
<td>10.79507</td>
<td>11.011</td>
<td>8.49999</td>
<td>2672.580</td>
<td>306.51118</td>
<td>735.62683</td>
</tr>
<tr>
<td>2.5</td>
<td>7.3410</td>
<td>10.64393</td>
<td>10.78937</td>
<td>10.490</td>
<td>8.47000</td>
<td>2680.033</td>
<td>310.81539</td>
<td>777.03848</td>
</tr>
<tr>
<td>5.8</td>
<td>7.1600</td>
<td>10.63140</td>
<td>10.78960</td>
<td>11.003</td>
<td>7.75200</td>
<td>3859.534</td>
<td>443.06240</td>
<td>1063.3498</td>
</tr>
<tr>
<td>0.9</td>
<td>7.1620</td>
<td>10.63415</td>
<td>10.79507</td>
<td>11.011</td>
<td>8.49999</td>
<td>2672.580</td>
<td>306.51118</td>
<td>735.62683</td>
</tr>
<tr>
<td>0.8</td>
<td>7.3999</td>
<td>10.56492</td>
<td>10.79487</td>
<td>11.100</td>
<td>8.51000</td>
<td>2485.7012</td>
<td>305.07157</td>
<td>732.17177</td>
</tr>
<tr>
<td>0.1</td>
<td>7.1620</td>
<td>10.63415</td>
<td>10.79507</td>
<td>11.011</td>
<td>8.49999</td>
<td>2672.580</td>
<td>306.51118</td>
<td>735.62683</td>
</tr>
<tr>
<td>0.11</td>
<td>7.3599</td>
<td>10.82607</td>
<td>10.90396</td>
<td>11.011</td>
<td>7.35990</td>
<td>2618.165</td>
<td>307.81134</td>
<td>738.74722</td>
</tr>
<tr>
<td>0.2</td>
<td>7.1620</td>
<td>10.63415</td>
<td>10.79507</td>
<td>11.011</td>
<td>8.49999</td>
<td>2672.580</td>
<td>306.51118</td>
<td>735.62683</td>
</tr>
<tr>
<td>0.1</td>
<td>6.8794</td>
<td>10.24481</td>
<td>10.72165</td>
<td>10.799</td>
<td>8.49000</td>
<td>2839.789</td>
<td>307.95639</td>
<td>739.09534</td>
</tr>
</tbody>
</table>
The change in values of various parameters involved in any inventory system may occur due to uncertainties in decision making situations. Sensitivity analysis has a vital role to study the effect of optimality due to above changes. Depending upon the various results of our model reflected in the sensitivity analysis table, the following references have been drawn from.

- When the deterioration parameter θ is increasing, the optimal profit and the optimal ordering quantity are also increasing but the optimal price has decreased.

- When the amount of backlogged is reduced during the stock-out interval, both the optimal profit and optimal ordering quantity are also reduced but optimal selling price is enhanced.

- When the unit price is increased both the ordering quantity and optimal profit are decreased but the selling price is decreased.

- When the production is increased the selling price, optimal profit and ordering quantity are decreased.

CONCLUSION

The present paper derives an optimal policy for perishable product under conditions of price dependent demand, demand dependent production and partial backordering which depends on the dimension of waiting time and lot sale. As the demand depends on selling pricing, production depends on demand and the production items are perishable hence the backlogging of demand is essential to avoid the useless cost towards deterioration. In a competitive market shortage acts as barrage for costumers’ inflow. In this article to avoid their dissatisfaction of waiting for long duration, a partial backlogged of total shortage has been recovered in each cycle This is given by, $B(\eta) = \frac{k_0}{1+k_1\eta}$, $0 < k_0 < 1$, $0 < k_1 < 1$,

where η is the waiting time of the customers receiving their goods. In the inventory literature generally shortage occurs after accumulation of inventory at early stage. The consideration of a new approach, shortage followed by inventory is more profitable than inventory followed by shortage. The present model has reported a significant a more profit. It is because of the introduction of a variable demand dependent production policy rather than a constant production policy. We hope the present article definitely shall suit the world business community to control the production depending upon the customers’ attitude and capability to buy in an uncertainty business world.
Acknowledgements:

The author would like to thank the editor and the reviewers for their valuable and constructive comments which have led the manuscript into a significant improvement. The author also thanks to the management of NIST for their kind cooperation in all respect to build up the manuscript.

REFERENCES

