Abstract— As the HIS Surfaces exhibits different properties mainly its constructive and destructive propertie on radiation pattern is very much useful in enhancing are supressing the radiation. This paper mainly shows how the elliptical and circular patch antenna are radiating in presence of the HIS. This paper illustrates the general parameters of both antennas by placing a HIS surface along one side of the regular antenna. And Return loss, input impedance, Radiation patterns, Gain and some other antenna parameters for both antennas are illustrated in this paper. And both were designed under same circumstances.

Index Terms — Energy band gap, Enhancement of energy, high impedance, surface wave suppression.

I. INTRODUCTION

A “high impedance surface” is an artificial material/structure formed by periodic metallic arrays printed on a metal-backed substrate, which exhibits extremely high impedance (Z_{HIS} >> Z_{free space}) in one or several frequency ranges. And it mainly supresses the propagation of surface waves. And when radiation from antenna is incidenting on this structure it either absorbs or reflects the radiation energy and enhances the antenna parameters which is explained in [1]. In this paper a elliptical patch antenna and a circular patch antenna are designed and the simulated results are presented. And the figure [1] shows the structure view of HIS.

II. DESIGN OF ANTENNAS

Here an Elliptical patch antenna of major radius 4cm and ratio 30 and circular patch antenna of radius 2.3cm are placed on substrate of same thickness and dimensions and same material and both are analyzed in the presence of same antenna. and they are shown in below figure [2].

Here in the HIS the gap between plates exhibits capacitance and the pillar high for having Inductance.

III. HIS DESIGN

HIS designed by taking plate size of 2×2cm and pillar of hight 0.5cm and radius 0.2cm. And the HIS parameters are calculated by the following Equations shown below.

$$\varepsilon = \left(2\varepsilon_{\infty}/\pi\right)\left(\cosh^{-1}\left[(w+g)/g\right]\right).$$

Fig [1]. HIS front View and Top View

Fig [2]. Elliptical and Circular patch antenna Design in HFSS software
Capacitance
\[C = \frac{W_{\varepsilon}}{(1+\varepsilon_r) \cosh^{-1}((2W+g)/g)} \]

Inductance
\[L = \mu_0 \mu_r h \]

Operating frequency
\[f = \frac{1}{(2\pi \sqrt{LC})} \]

Surface Impedance
\[Z = j\omega L / (1 - \omega^2 LC) \]

Band Width
\[BW = Z_{0} / \varepsilon \]

Reflection Phase of surface
\[\Theta = \tan^{-1}(Z_{\text{HIS}} - \eta_0) / (Z_{\text{HIS}} - \eta_0) \]

IV. SIMULATION RESULTS

A. Return loss

The return loss for the Elliptical and circular patch antennas are -29.881 dB and -19.98 dB respectively and these are at 5Ω and 10Ω port impedance for respective antennas and the return loss curves are shown in the following figure [3].

![Return Loss Curves](image)

Fig [3]. Return loss vs frequency curves for Elliptical and circular patch antennas

B. Input Impedance

The input impedance for both antennas are illustrated in the following figure [4].

![Input Impedance](image)

Fig [4]. Impedance curves for Elliptical and circular patch antennas

C. Radiation Pattern

The obtained radiation pattern is enhanced in the opposite direction of HIS and due to the HIS the radiation both antennas are improved from their conventional types i.e in the absence of His and also the back lobes energy also reduced because of HIS and the radiation also improved and the radiation patterns for both antennas are shown in the following fig [5] for radiation pattern for phi and fig [5] for radiation pattern in theta direction.
D. 3D-Gain

The 3D-Gain for designed antennas and their data illustrated in below fig[7] and fig[8] where we can say form fig [8] the both antennas energy maximum in theta direction in phi direction the energy due to surface waves is supressed leaving reduction of back lobes.

3D-Gain Top View

[5]. Radiation pattern for Phi=0,2,4,...360° for Elliptical and circular patch antennas

[6]. Radiation pattern for Theta=0,2,4,...360° for Elliptical and circular patch antennas
Over all 3D- Gain

Fig [8]. Over all 3D-Gain for Elliptical and circular patch antennas

E. Antenna parameters for designed antennas

By the simulation results the antenna parameters like peak gain, peak directivity, intensity, its radiation efficiency and front to back ratio and its filed distribution are illustrated in the below tables [1].

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max U</td>
<td>0.0199301</td>
</tr>
<tr>
<td></td>
<td>(W/sr)</td>
</tr>
<tr>
<td></td>
<td>0.00213185</td>
</tr>
<tr>
<td></td>
<td>(W/sr)</td>
</tr>
<tr>
<td>Peak Directivity</td>
<td>8.01318</td>
</tr>
<tr>
<td></td>
<td>4.63286</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>7.21552</td>
</tr>
<tr>
<td></td>
<td>4.40013</td>
</tr>
<tr>
<td>Peak Realized Gain</td>
<td>2.50455</td>
</tr>
<tr>
<td></td>
<td>2.67902</td>
</tr>
<tr>
<td>Radiated Power</td>
<td>0.00312553</td>
</tr>
<tr>
<td></td>
<td>(W)</td>
</tr>
<tr>
<td>Accepted Power</td>
<td>0.00347106</td>
</tr>
<tr>
<td></td>
<td>(W)</td>
</tr>
<tr>
<td>Incident Power</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(W)</td>
</tr>
<tr>
<td>Radiation Efficiency</td>
<td>0.900456</td>
</tr>
<tr>
<td></td>
<td>0.949764</td>
</tr>
<tr>
<td>Front to Back Ratio</td>
<td>11.8012</td>
</tr>
<tr>
<td></td>
<td>103.469</td>
</tr>
</tbody>
</table>

Table [1] Antenna parameters

From the above table [1] we can say that the intensity and peak realized gain for both antennas are almost same. But peak gain, and directivity for elliptical antenna are very much better than circular patch antenna, and radiation efficiency, front to back ratio are given better values for the circular patch antenna.

V. CONCLUSION

The HIS structures are often used for so many different application these are also called meta-materials and in the researchers analyzing different design patterns as HIS surfaces and applying them for altering the antenna parameters and for enhancing this paper is to examine how different shape antennas may work are not and their results are affected by HIS.

REFERENCES

BIOGRAPHY

J. Doondi kumar, was born in A.P, india in 1989. completed B.Tech in 2011 from Lakkireddy Bali Reddy college of Engineering affiliated to JNTU Kakinada. And worked as Assistant professor in Srijani educational society. Presently he is pursuing M.Tech in LBRCE. He has published international journals in antenna field.

Ranga Rao Orugu, was born in A.P,India. Completed M.Tech in Communication Systems at C.R,Reddy engineering College, Eluru and B.Tech from Sri Sarathi Institute of engineering and technology in the year 2009 in Electronics &Communication engineering, worked as Assistant professor in SVSE and ALIET. And presently he is working as Asst.Professor in Vishnu Institute of Technology, Bheemavaram ,A.P,India.His research interests in communications.
P.Krishna Reddy, was born in A.P,India, completed M.tech in SRM university, Chennai, in VLSI design. Presently working as assistant professor in Paladugu Parvathi Devi College of Engineering.