WAVELET BI-ORTHOGONAL FILTER COEFFICIENT BASED IMAGE COMPRESSION

Meenakshi A
PG Scholar,
Jaya Engineering College, Thiruvallur, India.
Ph.No:+919500062685

Hariharan M
Asst.Professor,
Jaya Engineering College, Thiruvallur, India.
Ph.No:+919940555311

Abstract- Digital image processing is used in many applications, the image compression is one of the example. New wavelet bi-orthogonal filter coefficients for wavelet decomposition and reconstruction of image are introduced for better image compression, when the image is compressed by using these filter coefficient in DWT-SPIHT schema then it perform better than DWT-SPIHT schema with wavelet 9/7 filter and wavelet 5/3 filter. The compression result by using these filter coefficient show that the reconstructed image has higher PSNR and low MSE than wavelet 9/7 filter and wavelet 5/3 filter.

Modern image compression algorithms such as JPEG 2000 employ the discrete wavelet transform (DWT) to redistribute the information in an image into a more compressible format. Under normal conditions, the DWT provides near perfect performance, but in situations requiring the transmission of images across noisy or bandwidth-limited channels, the performance of the wavelet algorithm may be improved by redefining the wavelet filter using an optimization algorithm. The optimized filters provide good performance under special conditions they no longer adhere to the mathematical properties of wavelets, namely the bi-orthogonal between the forward (compression) and inverse (reconstruction) filters.

Keywords-Image compression, Wavelet Transform, Image texture, Wavelet 9/7 filter, Wavelet 5/3 filter.

I.INTRODUCTION

Since last two decade the discrete wavelet transform (DWT) has witnessed great success for image compression. In 2-D Discrete wavelet transform based compression technique, two 1-D transform is used in which one 1-D transform is used for vertical directions and another for horizontal directions. The conventional 2-D discrete wavelet transform (DWT) efficiently captures point singularities of image, but fails to capture line singularities because edges and contours in images are not aligned with the horizontal and vertical direction of image.

According to the property of DWT the energy of image is spread across sub-bands if the edges and contours are not aligned vertically and horizontally. That’s why there is requirement of directional transform so that energy cannot spread in sub-bands. Attempts on orientation adaptive transform can be classified into two categories: one category analyses an image along a predetermined set of directions, whereas the other category adapts the directional analysis itself to the oriented futures of image.

Lifting structure based several adaptive wavelet transform which adapt the filtering directions to the orientations of edges and textures, have been proposed. All the DWT based method whether they are conventional and directional, use wavelet 9/7 filter or wavelet 5/3 for better compression. The popular 9/7filter is one of the bi-orthogonal wavelet filters proposed by Cohen, Daubechies and Feauveau in 1992. This filter has been used as the
default filter in the irreversible wavelet transform of
the upcoming new still image compression
standard JPEG2000.The implementation of the
wavelet transform with the 9/7 filter has two
modes:convolution-based implementation(LB1).The
former has a higher commutation cost than the
latter. It is reported that the JPEG2000 decoder
takes approximately 34 times longer than the JPEG
encoder. This paper introduces new wavelet
based bi-orthogonal filter coefficient that can
give better result in case PSNR and MSE
comparison to wavelet 9/7 filter and wavelet 5/3
filter.

II. IMAGE COMPRESSION

Image compression is one of the most visible
applications of wavelets. The rapid increase in
the range and use of electronic imaging justifies
attention for systematic design of an image
compression system and for providing the image
quality needed in different applications. The
objective of image compression is to reduce
irrelevance and redundancy of the image data in
order to be able to store or transmit data in an
efficient form.

III. DISCRETE WAVELET TRANSFORM

The Wavelet Series is just a sampled version of
CWT and its computation may consume
significant amount of time and resources,
depending on the resolution required. The
Discrete Wavelet Transform (DWT), which is
based on sub-band coding is found to yield a fast
computation of Wavelet Transform.
It is easy to implement and reduces the
computation time and resources required. The
foundations of DWT go back to 1976 when
technique to decompose discrete time signals were
devised. Similar work was done in speech signal
coding which was named as sub-band coding. In
1983, a technique similar to sub-band coding was
developed which was named pyramidal coding.
Later many improvements were made to these
coding schemes which resulted in efficient multi-

resolution analysis schemes. In CWT, the signals
are analyzed using a set of basis functions which
relate to each other by simple scaling and
translation. In the case of DWT, a time-scale
representation of the digital signal is obtained
using digital filtering techniques. The signal to be
analyzed is passed through filters with different
cutoff frequencies at different scales.

IV.TWO-DIMENSIONAL DWT

Diagram Showing Sub-band generation
using Conventional wavelet transform

Like the 1-D discrete wavelet transform, the 2-D
DWT can be implemented using digital filters and
down samplers. With separable two dimensional
scaling and wavelet function, we simply take the 1-
D DWT of the rows of f(x, y), following by the
1-D FWT of the rows of f(x, y), following by the
1-D FWT of resulting columns.
Note that, like its one-dimensional counterpart, the
2-D FWT filters the scale j + 1 approximation
coefficients to construct the scale j approximation
and detail coefficients. In the two-dimensional case,
however, we get three sets of detail coefficients the
horizontal, vertical, and diagonal details.
The single-scale filter bank of Figure can be iterated (by tying the approximation output to
the input of another filter bank) to produce a P
scale transform in which scale j is equal to J - 1, J-
2,.., J - P. As in the one-dimensional case, image f
(x, y) is used as the Wφ(J, m, n) input. Convolving
its rows with hφ(-n) and h (-n) and down sampling
its columns,we get two sub images whose horizontal
resolutions are reduced by a factor of 2. The high-
pass or detail component characterizes the image's
high-frequency information with vertical orientation;
the low pass, approximation component contains its
low-frequency,vertical information. Both sub images
are then filtered column wise and down sampled to
yield four quarter-size output sub images
wφ, wHφ, wVψ and wDψ.
These sub images are the inner products of \(f(x, y) \) and the two-dimensional scaling and wavelet functions followed by down sampling by two in each dimension. Two iterations of the filtering process produce the two-scale decomposition at the far right of Figure.

The reconstruction algorithm is similar to the one-dimensional case. At each iteration, four scale \(j \) approximation and detail sub images are up sampled and convolved with two one-dimensional filters one operating on the sub images columns and the other on its rows. Addition of the results yields the scale \(j + 1 \) approximation and the process is repeated until the original image is reconstructed.

V. SPIHT

SPIHT stands for Set Partitioning in Hierarchical Trees. The term Hierarchical Trees refers to the quad trees that we defined in our discussion of EZW. Set Partitioning refers to the way these quad trees divide up, partition, and the wavelet transform values at a given threshold. By a careful analysis of this partitioning of transform values, can be able to improve the EZW algorithm, significantly increasing its compressive power.

VI. TABULAR COLUMN AND OUTPUT

After reconstruction of image two parameters are measured as follows:-

(i) Mean square error (MSE) is a distortion measure for loss compression. The MSE between two image is given as:-

\[
\text{MSE} = \frac{1}{k} \sum_{i=1}^{k} (p_i - q_i)^2
\]

And root mean square error is given by:-

\[
\text{RMSE} = \sqrt{\text{MSE}}
\]

Here, \(p_i \) = Original Image data
\(q_i \) = Reconstructed Image data
\(k \) = Size of image

(ii) The peak signal to noise ratio for reconstructed image is given by:-

\[
\text{PSNR} = 20 \log_{10} \left(\frac{\text{Max}(pi)}{\text{MSE}} \right)
\]

VILTABLES CONTAIN 9/7 FILTER COEFFICIENT AND PROPOSED FILTER COEFFICIENT

<table>
<thead>
<tr>
<th>IMAGE</th>
<th>SPL53 MSE</th>
<th>CDF97 MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>PSNR (dB)</td>
<td>MSE</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>NATURE</td>
<td>36.79</td>
<td>13.6274</td>
</tr>
<tr>
<td></td>
<td>37.68</td>
<td>11.0978</td>
</tr>
<tr>
<td></td>
<td>37.30</td>
<td>12.1136</td>
</tr>
</tbody>
</table>

Rate: 1

Compressed RGB output

Rate: 0.5

Compressed RGB output
Compressed RGB output

VIII. RESULT AND DISCUSSION

The image coding results are compared in this section between DWT-SPIHT with wavelet 9/7 filter coefficient and DWT-SPIHT with proposed filter coefficient. Here SPIHT coding schema is utilized to organize the compressed bitstream in the compression scheme. The compression ratio is set as the input of the compression system.

The experimental results include four different ratio PSNR values for DWT-SPIHT with 9/7 wavelet filter and proposed filter. In shown in the table we see that the proposed filter based DWT-SPIHT schema is better than the old DWT-SPIHT compression schema.

IX. CONCLUSION

The image coding results were compared in this Project phase-1 between DWT-SPIHT with wavelet 9/7 filter coefficient and DWT-SPIHT with proposed filter coefficient. Here SPIHT coding schema is utilized to organize the compressed bitstream in the compression scheme.

The compression ratio is set as the input of the compression system. The experimental results include four different ratio PSNR values for DWT-SPIHT with 9/7 wavelet filter and proposed filter. In the tabular column we see that the proposed filter based DWT-SPIHT schema is better than the old DWT-SPIHT compression.

X. REFERENCES

[1] Performance Analysis of Image Compression Using Wavelets Sonja Grbic, Mislav Grbic Member, IEEE, Branka Zovko-Cihlar, Member, IEEE. VOL.48,NO.3, JUNE 2001