
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 1, January 2014

107

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

Abstract— Grid computing is a high performance computing

environment to solve larger scale computational demands.

Grid computing contains resource management, task

scheduling, security problems, information management and

soon. Task scheduling is a fundamental issue in achieving high

performance in grid computing systems. However, it is a big

challenge for efficient scheduling algorithm design and

implementation. In this paper, a heuristic approach based on

compact genetic algorithm is adopted to solving task

scheduling problem in grid environment. Each individuals is

represented a possible solution. This approach aims to generate

an optimal schedule so as to get the minimum completion time

while completing the tasks.

Index Terms— Grid computing, Task scheduling, Compact

Genetic Algorithm.

I. INTRODUCTION

 A computational grid is a large scale, heterogeneous

collection of autonomous systems, geographically distributed

and interconnected by heterogeneous networks. Job sharing

(computational burden) is one of the major difficult tasks in a

computational grid environment. Grid resource manager

provides the functionality for discovery and publishing of

resources as well as scheduling, submission and monitoring

of jobs. However, computing resources are geographically

distributed under different ownerships each having their own

access policy, cost and various constraints. With the

development of the network technology, grid computing used

to solve larger scale complex problems becomes a focus

technology. Task scheduling is a challenging problem in grid

computing environment [8]. If large numbers of tasks are

computed on the geographically distributed resources, a

reasonable scheduling algorithm must be adopted in order to

get the minimum completion time. So task scheduling which

is one of NP-Complete. Grid computing is a term referring to

the combination of computer resources from multiple

administrative domains to reach a common goal. The grid

can be thought of as a distributed system with non-interactive

workloads that involve a large number of files. Grid

computing is a high performance computing environment to

Manuscript received Dec, 2013.

Prateek kumar Singh, MTech (CSE), Department of Computer Science and

Engineering, RGPV/LNCT Jabalpur,India

Neelu Sahu,,M.E (C.T.A)Department of Computer Science and Engineering,

SSCET/ CSVTU, Bhilai, India

solve larger scale computational demands [9]. Grid
computing contains resource management, job scheduling,

security problems, information management and so on. Job
scheduling is a fundamental issue in achieving high

performance in grid computing systems [10].

Problems become a focus by many of scholars in grid

computing area. Because of, the classical algorithms are not

dynamic, they cannot achieve the optimal scheduling for all

situations, and therefore these algorithms cannot adapt

themselves with all situations. Compact genetic algorithm

has been widely used to solve this problem.

II. PROBLEM IDENTIFICATION IN GRID SYSTEM

The resource in a computational grid can be anything which

can be used to solve the given problem. For example a set of

printers which are used for printing a set a documents. The

overall objective of task scheduling is to minimize the

completion time and to utilize the resources effectively and

usually it is easy to get the information about the ability to

process data of the available resource.[1][13].

The scheduling problem arises in a situation where there are

more tasks than the available resources. Consider a scenario

wherein there are x={1,2,3,4….X} tasks to be done and there

are y={ 1,2,3,4…..Y} resources available. With the

condition that the task is not allowed to migrate between

resources. In such a situation if we have y> x then there is no

reason for developing new algorithms for task scheduling

because then resources can be allocated to the tasks on first

come first serve basis, but if y<x then we need to develop new

algorithms for task scheduling because now inefficient

resource allocation can greatly hamper the efficiency and

throughput of the scheduler.

To formulate the problem, define Ta ={1,2,3,….X} as x

independent tasks permutation and Rb={1,2,3,Y} as y

computing resources. For example a set of printers which are

used for printing a set a documents. The overall objective of

task scheduling is to minimize the completion time and to

utilize the resources effectively and usually it is easy to get

the information about the ability to process data of the

available

resource [4].

Suppose that the processing time Pa,b for task ‗a‘ computing

on ‗b‘ resource is known. The completion time P(x) represent

the total cost time of completion. The objective is to find a

permutation matrix y= (Ya, b), such that:

Ya, b=1 if resource ‗b‘ performs task ‗a‘.

Else

Task Scheduling in Grid Computing

Environment Using Compact Genetic

Algorithm
Prateek kumar Singh, Neelu Sahu

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 1, January 2014

108

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

Ya, b=0 that means number of resource are not perform

number of task. Which minimize total cost:

Subject to:

ΣYa, b=1; ∀b ϵ T

Ya, bϵ {0, 1}, ∀aϵ R; ∀bϵ T

The minimal P(x) represents the length of schedule whole

tasks working on available resources. The scheduling

constraints guarantee that each task is assigned to exactly one

resource. We will discuss that a new optimal schedule is able

to find the minimal completion time. To solve the task

scheduling problem we have used the Compact genetic

algorithm (cGA). We set an initial population by selecting a

random starting sequence from the set of x! Sequences;

where x is the total number of tasks. After getting the initial

solution we calculate fitness value of each solution,

according to equation. After that we calculate best among the

entire solution and set it as an initial global best.GA update

equation is used to update old population and generate new

sequences and then their resources are calculated. These

sequences, along with their resources are then used to find

the fitness value of each individual of each solution of the

Population [5]. After this if crossover criteria is satisfied,

then crossover operation performed over two randomly

selected parents and as a result a new sequence is generated.

Then the resource of this offspring is calculated. Using the

sequence and its resources the fitness value of the offspring is

calculated. Based on the fitness value, if the offspring is

better than its worst parent then this solution replaces that

parent [12].

III. GENETIC ALGORITHM AND SCHEDULING

There are many examples in the literature of artificial

intelligence techniques being applied to task scheduling [1],

[8]. Meta-heuristic search techniques such as Gas, tabu and

ant colony search are most applicable to the task scheduling

problem because we wish to quickly search for a near optimal

schedule out of all possible schedules. Good results have

resulted from the use of GAs in task scheduling algorithms

[3].

A GA is a meta-heuristic search technique which allows

for large solution spaces to be partially searched in

polynomial time, by applying evolutionary techniques from

nature[7]. GAs use historical information to exploit the best

solutions from previous searches, known as generations,

along with random mutations to explore new regions of the

solution space. In general a GA repeats three steps (selection,

crossover, and random mutations) as shown by the pseudo

code in Fig. 1.

Selection according to fitness (efficiency in our case) is a

source of exploitation, and crossover and random mutations

promote exploration. A generation of a GA contains a

population of individuals, each of which correspond to a

possible solution from the search space [11]. Each individual

in the population is evaluated with a fitness function to

produce a value which indicates the goodness of a solution.

Selection takes a certain number of individuals in the

population and brings them forward to the next generation.

Crossover takes pairs of individuals and uses parts of each to

produce new individuals. Random mutations swap parts of

an individual to prevent the GA from getting caught in a

local minimum.

Figure1: Pseudo code for genetic algorithm

IV. PROPOSED METHODOLOGY

In this paper we have proposed a solution for grid scheduling

using Compact genetic algorithm with linear Crossover

operator. For solving any optimization problem we have to

first formulate the problem according to optimization

problem.

Population Representation

To solve the problem, representation of the population and

fitness value is required, so we have to first represent the grid

scheduling problem in terms of CGA with linear Crossover

operator. In grid scheduling we have a set of tasks and a set of

resources as input and a sequence, which informs that which

task is to be operated on which resource and in which order as

output. CGA with Linear Crossover is based on population

concept and each individual in population represents a

solution,

in case of grid scheduling problem, solution is a sequence of

tasks which are to be performed. So we have to first formulate

each individual of CGA with Linear Crossover [5].

We represent task set as X= {t1,t2,t3….tn}and set of

resources R={r1,r2,r3….rm}, Task id and resource id is

given to each task and each resource so that they can be easily

differentiated from one other. Such as t1 is the task id of first

task and r1 is the resource id of first resource. Here x

represents the total number of tasks. For e.g. we have 5 tasks

which are to be performed on 3 available resources, then we

have dimension value as 5.

Assuming that we have a dimension value= {4,0,3,1,2,}.

Here

4 represent value for first dimension of an individual which

indicates 5th task.

0 represent value for second dimension of an individual

which

 P(X) =ΣΣ Pa, b *Ya, b

initialise population

do{

crossover

random mutation

selection

}while(stopping conditions not met)

return best individual

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 1, January 2014

109

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

indicates 1st task.

3 represent value for third dimension of an individual which

indicates 4th task.

1 represents value for fourth dimension of an individual

which

indicates 2nd task.

2 represent value for fifth dimension of an individual which

indicates 3rd task.

R = X mod M i.e. value of Task set mod Total resources

This formula is used to determine the associated resources for

the calculated tasks in the sequence. We can calculate the

resource set as {0, 2, 1, 2, 0}. From this set, we can interpret

that

Task 4 is operated by resource 0,

Task 0 is operated by resource 2,

Task 3 is operated by resource 1,

Task 1 is operated by resource 2,

Task 2 is operated by resource 0,

Fitness Function

After representation of each individual we have to calculate

fitness value of each individual. In case of grid scheduling

problem optimal solution is the minimization the value of

equation (ΣMab = 1; ∀b ϵT). Our main objective is to

minimize the fitness value, an individual who have the

minimum fitness value is considered as the optimal solution

[3].

V. ALGORITHM: COMPACT GENETIC ALGORITHM

The Compact Genetic Algorithm (CGA) proposed by Harik,

Lobo and Goldberg represents the population as a probability

distribution over the set of solutions; thus, the whole

population needs not to be stored. At each generation, CGA

samples individuals according to the probabilities specified

in the probability vector. The individuals are evaluated and

the probability vector is updated towards the better

individual. The CGA mimics the order-one behavior of

Simple Genetic Algorithm (SGA) with uniform crossover

using a small amount of memory, and achieves comparable

quality with approximately the same number of fitness

evaluations as the SGA. The process of the CGA is shown in

figure 1. In the first step, the probability vector is initialized

with 0.5. Each dimension in the vector represents the

probability of each bit happened to be one [5]. Two candidate

solutions are sampled from this vector. After evaluating, the

winner and loser are specified. From figure 2, the winner is

11100101 and the loser is 10001100. The probability vector

is updated according to the winner. The different bit between

the winner and loser guides the probability to come closer to

the better solution. Therefore, each dimension in the

probability vector is updated toward the better solution by

adding or subtracting the probability with an updating step

size (1!). In a different bit, we add probability when the

winner is 1, and subtract the probability when the winner is

0. E.g. updating step size is 0.1, the probability vector

becomes as in step 4. The process of the CGA is repeated

until the probability vector has converged. The concept of the

CGA is simple and it has been proved that it performs like the

SGA with population!, when the updating step size in the

CGA is 1 ! [7]. the CGA reduces the size and power

requirements of the system by representing the population as

a probability vector rather than a collection of bit strings.

Figure 2 the procedure of the CGA

Compact genetic algorithm with Linear Crossover

This algorithm initializes a Probability Vector (PV), where

each component of the PV initialize with the parameter of

0.5, and then two solutions are randomly generated by using

this PV. The generated solutions are ranked based on their

fitness values. Then, the PV is updated based on these

solutions. This process of adaptation continues until the PV

converges. The cGA represents the population as a PV over a

set of solutions with the uniform crossover [12].

At each iteration the cGA manages its population as a PV, p

(i) = (p1 (i)... pn(i)), where n is the number of genes, thereby

it mimics the order-one behavior of the SGA with the linear

crossover. The value of pi (k) ϵ [0, 1], i = 1, ... , n , measures

the proportion of the allele ‖1‖ in the ith locus of the

simulated population. Figure 3 describes the pseudocode of

1) Initialize probability vector

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2) Generate two individuals from the vector

1 1 1 0 0 1 0 1

1 0 0 0 1 1 0 0

3) Let them compete

Winner

1 1 1 0 0 1 0 1

Loser

1 0 0 0 1 1 0 0

 4) Update the probability vector towards the

better one

(The bits that are different are in gray color.)

0.5 0.6 0.6 0.5 0.4 0.5 0.5 0.6

 5) Repeat step 2) – 4) until the vector has

Converged

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 1, January 2014

110

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

the cGA. For i = 1... , n, pi (0) is initialized with 0.5 to

represent a randomly generated population. In each

generation (i.e. iteration), two competing solutions are

generated on the basis of the current PV and then the PV is

updated to favour the better solution (i.e. winner). The

probability pi(k) is increased (decreased) by the learning step,

α, when the ith locus of the winner has an allele of ‖1‖ (resp.

‖0‖) and the ith locus of the loser has an allele of ‖0‖ (resp.

‖1‖). If both the winner and the loser have the same allele in

the ith locus, then the probability pi(k) remains the same.

Now we use compact genetic algorithm and each iteration

CGA manage its population as a probability vector is PV,

Probability vector is initialized with parameter 0.5 to

represent a randomly generated population. In each

generation (i.e. iteration), generate the individuals from the

probability vector and find out the best one and then the

position vector is updated to favour the better chromosome

(i.e. winner). Let the best individuals are ‗a‘ and ‗b‘ then

compete both individuals, if both individuals fitness value is

same then we assign ‗a‘ is winner and update the probability

vector along the way. Clearly the best individual wins all the

competition. The CGA terminates when all the probabilities

converge to zero or one.

Figure 3: CGA with Linear crossover

VI. CONCLUSION

In this paper we present compact genetic algorithm, an

algorithm that mimics the order one behavior of simple

genetic algorithm with a given population size and selection

rate, but that reduce its memory requirement. I am showing

the result of each no. of task is assign by no. of resources and

calculates fitness value. I will show my next paper which task

is minimum cost that will directly show the value of task and

resources.

ACKNOWLEDGMENT

I would like to thank my project guide for guidance and thank

H.O.D sir for using Computer lab and thank Director sir for

using resources and thank colleague and friends for

supporting and thank the anonymous referees for their

helpful comments and suggestion that have improved the

quality of this manuscript.

 REFERENCES

[1] Abraham, A., Buyya, R., Nath, ―Natures heuristics for scheduling jobs on

computational grids‖. In: The 8th IEEE International Conference on Advanced

Computing and Communications (ADCOM 2000). pp. 45{52. Citeseer (2000)

[2] Edwin S.H. Hou, Nirwan Ansari, Hong Ren, ―A Genetic Algorithm for

Multiprocessor Scheduling‖, IEEE Transaction On Parallel And Distributed

System, 1994, Vol.5, No.2, pp.113-120.

 [3] Reza Rastegar, Arash Hariri, ―A Step Forward in Studying the Compact

Genetic Algorithm‖, 2006 by the Massachusetts Institute of Technology,

Vol.14, No.3, pp.277-289.

[4] Javier Carretero, Fatos Xhafa, ―Genetic Algorithm Based Scheduling for

Grid Computing Systems‖, International Journal of Innovative Computing,

Information and Control, Volume 3, Number 6, 2007.

 [5] Chatchawit Aporntewan, Prabhas Chongstitvatana,―

―A Hardware Implementation of the Compact Genetic Algorithm‖,IEEE

congress of evolutionary computation Seoul Korea, may 2001.

[6] R.Deepa, T.Srinivasan, ―An Efficient Task Scheduling Technique in

Heterogeneous Systems using Genetic Algorithm‖.

[7] Lee Wang, Howard Jay Siegel, Vwani P. Roychowdhury, ―Task Matching

and Scheduling in Heterogeneous Computing Environments Using a

Genetic-Algorithm-Based Approach‖, Journal of Parallel and Distributed

Computing,1997 ,pp.8-22. [8] Shijue Zheng, Wanneng Shu, and Shangping

Dai, ―Task Scheduling Model Design Using Hybrid Genetic Algorithm‖, First

International Conference on Innovative Computing, Information and Control

(ICICIC'06),2006 IEEE.

[9] Vahe Aghazarian, Arash Ghorbannia, Nima Ghazanfari Motlagh, Mohsen

Khajeh Naeini, ―RQSG-I: An Optimized Real time Scheduling Algorithm for

Tasks Allocation in Grid Environments‖, 2011 IEEE.

 [10]Yi-Hsuan Lee and Cheng Chen, ―A Modified Genetic Algorithm for Task

Scheduling in Multiprocessor Systems‖ 2003.

 [11] Ahn, C. W. and Ramakrishna, ―Elitism-based compact genetic

algorithms‖, IEEE Trans. Evolutionary Computation, 7(4):367–385.

 [12]George, Goldberg and lobo,The ―Compact genetic algorithm‖, 1998IEEE.

[13]Lei, chen, jing and bo yang, ―Task scheduling algorithm based on pso for

grid computing‖, International Journal of Computational Intelligence Research.

Vol.4, No.1 (2008), pp. 37–43.

Neelu Sahu received the B.E degree in computer science & engineering from

the Institute of Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India,

in 2010. And M.E from the Shri Shankaracharya Group of Institutions, Bhilai,

India.
Prateek kumar Singh received the B.E degree in information Technology

from R.I.T.E.E college, Raipur, India, in 2012. And pursuing M.Tech from the

LNCT, Jabalpur, India.

Compact GA (n, N, fitness)

P= allocate vector of n real number;

 For i: =1 to n

 do p [i]:= 0.5;

 t=0;

Generate two solutions from probability

vector

 a:= generate p[i]; b := generate p[i];

Compete both solutions

if (fitness (a)> fitness (b)) then

 W = a;

Else

 L = b;

 t= t+1;

(Where W is winner and L is loser)

Update the probability vector

 d=1/n;

 For i: = 1 to n do

 If(W [i] >L[i])then

 p[i]:=p[i] +d;

else

 p[i]:= p[i] -d;

Check if the probability vector has converged.

Go to Step2, if it is not satisfied.

