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Abstract— The present study focuses on MHD flow between 

two parallel plates through porous medium with one in 

uniform motion and the other plate at rest and uniform suction 

at the stationary plate is discussed. The partial differential 

equations governing the flow are solved by similarity 

transformation. The axial and transverse velocity of the fluid 

and the pressure distribution were presented. Analytical 

expression is given for the velocity field and the effects of the 

various parameters entering into the problem are discussed 

with the help of graph.  

 

Index Terms— Fluid flow, MHD flow, parallel plates, 

porous medium, similarity transformation  

I. INTRODUCTION 

  Magneto hydrodynamic flow has many applications in 

aerodynamic heating, electrostatic precipitation, polymer 

technology, petroleum industry, accelerators, fluid droplets, 

MHD pumps, power generators and purification of crude oil. 

Flow through porous medium has numerous Engineering 

and Geophysical applications. J. Hartmann and F. Lazarus 

[1] studied the influence of a transverse uniform magnetic 

field on the flow of a conducting fluid between two infinite 

parallel, stationary and insulated plates. The equations which 

describe the MHD flow are a combination of continuity 

equation and Navier-Stokes equations of fluid dynamics. The 

governing equations are differential equations that have to be 

solved either analytically or numerically. A. S. Berman [2] 

studied the laminar flow in channel with porous walls. J. 

Hartmann [3] considered the magnetic field in the laminar 

flow of an electrically conducting liquid. I. A. Hassaninen, 

M. A. Mansour [4] has investigated the magnetic flow 

through the porous medium between two infinite plates. E. 

A. Hamza [5] has studied the suction and injection effects of 

flow between parallel plates. V. Soundalgekar, A. Uplekar 

[6] studied the effect of heat transfer considering constant 

temperature. C. B. Sing, P. C. Ram [7] considered laminar 

flow of an electrically conducting fluid through a channel in 

the presence of transverse magnetic field under the influence 

of periodic pressure gradient and solved the resulting 
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differential equation by the method of Laplace transform. 

The necessities of modern machinery have motivated the 

interest in fluid flow studies, which involve the interaction of 

several phenomena. One such study is presented, when a 

viscous fluid flows over a porous surface has its significance 

in many engineering problems such as flow of liquid in a 

porous bearing D. D. Joseph and L. N. Tao [8], in the field of 

water in river beds, in petroleum technology to study the 

movement of natural gas, oil and water through the oil 

reservoirs, in chemical engineering for filtration and 

purifications process. R. E. Cunningham and R. J. Williams 

[9] also reported several geophysical applications of flow in 

porous medium, viz. porous rollers and its natural occurrence 

in the flow of rivers through porous banks and beds and the 

flow of oil through underground porous rocks. The 

mathematical theory of the flow of fluid through a porous 

medium was initiated by H. Darcy [10]. For the steady flow, 

he assumed that viscous forces were in equilibrium with 

external forces due to pressure difference and body forces. 

Later on H. C. Brinkman [11] proposed modification of the 

Darcy‟s law for porous medium. In the most of the examples, 

the fluid flows through porous medium, have two regions. In 

region I, the fluid is free to flow and in region II, the fluid 

flows through the porous medium. S. M. Cox [12] considered 

the two dimensional flow of a viscous fluid in a channel with 

porous walls. Many research works concerning the 

Hartmann flow has been obtained under different physical 

effects [13-15]. S.Ganesh, S.Krishnambal [16] studied 

unsteady MHD stokes flow of a viscous fluid between two 

parallel porous plates. They considered the fluid being 

withdrawn through both walls of the channel at the same 

rate. 

In this paper, the unsteady fluid flow through the 

parallel plate channel under the influence of magnetic field 

and assess the effect to velocity through porous medium and 

the solution are expressed in terms of Hartmann number. 

. 

II. MODEL FORMULATION 

The flow of an incompressible viscous fluid between 

two parallel porous plates y = - h and y = h in a parallel plate 

channel bounded by a loosely packed porous medium. The 

fluid is driven by a uniform pressure gradient parallel to the 

channel plates.  

 Let u and v be the velocity components in the x and y 

directions respectively in the flow field at time t. 

Unsteady MHD flow between two parallel plates 

through porous medium with One Plate Moving 

Uniformly and the Other Plate at Rest with 

Uniform Suction  
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III. ASSUMPTION 

1. Flow between non conducting two parallel plates. 

2. Viscosity of the fluid is considered as constant. 

3. One plate is in uniform motion and the other 

 plate (stationary plate) at rest with uniform suction. 

4. u and v are velocity components in the direction of  

x and y respectively. 

IV. NOTATIONS 

    
 - Density of the fluid 

 - Coefficient of viscosity 

K - Porous medium 

 - Stream function 

 - Dimensionless distance 

 - Electrical conductivity of the fluid 

 - Kinematic viscosity )(    

  B0 - Electromagnetic induction 

  H0 - Transverse magnetic field 

    - Hartmann number
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V. GENERAL SOLUTIONS TO THE PROBLEM 

With the help of discussions in the previous sections,   

Let us choose the solutions of the equations (1)-(3) 

respectively as 
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   With the boundary conditions 
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Let 
h

y
 be the dimensionless distance and let
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kinematic viscosity and the equations (1), (2) and (3) become
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The boundary conditions are converted into 
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The stream function ),( yx is defined as  
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From equations (2), (3), (9) and (10), we have 
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Partially differentiating the equations (11) & (12) with 

respect to „‟ & „x‟ respectively 
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From equations (13) & (14), we get 
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Integrating equation (15), we have 
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where M is the Hartmann number and 
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Hence the solution of (17) subject to the boundary condition 

(18) is 
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Substituting the value of )(f in the stream function  

Hence the Axial Velocity becomes 
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Transverse Velocity becomes 
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VI. PRESSURE DISTRIBUTION                    

 

The Pressure Drop can be obtained from (7), (8) and (19) 
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VII. RESULTS AND DISCUSSIONS 

Analytical solutions of this problem are obtained and the 

outcome is illustrated graphically. Figs.1–9 shows the 

features of important physical parameters on the average 

entrance velocity, density, time, Hartmann number and 

pressure distributions. Throughout the computations 

u0=0.5,v0=0.5,x=1,y=-1to1,h=2,a=1;K=5,=1,µ=0.5,=0.5

,n=0.5,t=0.2,B0=0.5,M=1 are considered as input value for 

the graph. Figs. 1-9 present the effect of axial velocity of 

fluid, transverse velocity of fluid and pressure distribution 

respectively. 

 
Figure1.Axial Velocity when  increases 

 
          Figure2. Axial Velocity when time increases 

Figs. 1, 2 and 4 shows that the velocity of the fluid 

decreases when , t, M increases.  Figure 3 shows that 

velocity of fluid increases as u0 increases. Figs. 1-4 shows 

that the magnitude of the upper plate and lower plate are 

same. Figs.5–7 shows that the variation of transverse velocity 

with respect to the variations of the parameter , v0 and M. 

Figs. 5–7 shows the magnitude of the upper and lower plates 

are not same. Figure 5 shows that transverse velocity of the 

fluid increases as , v0 and M increases.  

 

             
Figure3. Axial Velocity when u0 increases 

      
  Figure4. Axial Velocity when M increases 

          
Figure5. Transverse Velocity when  increases  
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  Figure6. Transverse Velocity when v0 increases 

 
Figure7. Transverse Velocity when M increases 

 

          
Figure 8.Pressure when  increases 

         
Figure9.Pressure when x increases 

 

Figure 8 and 9 shows that variations of the pressure of the 

fluid with respect to the parameter ,x. Figure 7 shows that 

the pressure of the fluid increases when x <0 and decreases 

when x>0. Figure 9 shows that pressure of the fluid decreases 

as x increases. Figure 8 and 9 shows that the magnitudes of 

the upper and lower plates are same. The above results reduce 

to the results of [16] when K-infinity. 

 

 

VIII. CONCLUSION 

 

Analytical solutions are obtained for the Unsteady MHD flow 

between two parallel plates through porous medium with 

One Plate Moving Uniformly and the Other Plate at Rest with 

Uniform Suction.  The Similarity transformation method is 

used to solve the problem and the results are evaluated 

analytically and displayed graphically. In the light of the 

present investigation, following conclusions are drawn: 

 

 The Axial velocity of the fluid decreases as density (), 

time, Hartmann number (M) increases. 

 The Axial velocity of the fluid increases as average 

entrance velocity (u0) increases 

 Transverse velocity of fluid increases as density, 

Hartmann number (M) and suction (v0) increases. 

 Pressure of the fluid decreases as x increases. 
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