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Abstract— Electrical signal transmission cables can be 

mathematically modeled either by lumped parameters 

approach or distributed parameters approach depending on 

the frequency of the signal to be transmitted. Unlike high 

frequency signal transmission systems, Low frequency 

electrical transmission cables such as Remote Operated 

Vehicle (ROV) control signal cables (tethers) can be modeled 

using lumped parameter approach. In this paper, we model, 

simulate and analyse the behaviour of a conceptualised 

electrical cable that is used to transmit low frequency electrical 

control signals. We conceptualise a cable as if resistance, 

capacitance and inductance are placed at particular distinct 

points along the cable. The models are analysed and compared 

by increasing the magnitude of RLC (Resistor, Inductance and 

Capacitance) components for a fixed length versus increase in 

length by replicating the same RLC components of the cable 

along transmission line by the same factor. Analysis of 

responses from these models is made subject to step and square 

input signals. Comparison was based on most popular 

parameters that are used in transient signal responses. 

Simulation results confirmed the signal dumping effect of 

increasing the cable length. 

 

Index Terms— Lumped parameters, Signal Transmission 

Cables, ROV Cables, State Space Model, Simulation 

 

I. INTRODUCTION 

  Modelling electrical signal transmission cable requires 

prior knowledge about the frequency of the signal to be 

transmitted [3] and this dictates the modelling method. 

Unlike signals in high frequency bands such as radio 

frequency bands where transmission systems are modelled by 

distributed parameter approach using partial differential 

equations[1],[2], lower frequency transmission cables such 

as control signal transmission systems can modelled by 

lumped parameter approach using Ordinary Differentials 

Equation [1],[2]. These low frequency control signals are 

practically applicable in Remote Operated Vehicles (ROV) 

deployed in subsea activities which can be monitored 
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onshore. In ROVs, control signal cables are aligned and 

shielded together with data transmission cables such as 

optical cables to transmit signals such as row video data 

required for real-time subsea Monitoring [5]. 

 

In this paper, we base on well known behaviour of RLC 

circuitry subject to AC signal source [2] and model a low 

frequency electrical based transmission cable using Ordinary 

Differential Equations (ODEs). Our aim is not to propose a 

novel technique but to make a conceptualised comparative 

analysis. We first model arbitrarily an “L” length cable (1L 

Model) with specified magnitude of RLC components as 

depicted in (fig. 1). We further model “2L” length cable (2L 

model) by duplicating the first model along the transmission 

length. Based on the first model in (fig.1), we also develop 

another model by using a cable of fixed length “L” but 

doubling the magnitude of RLC components (2Va model) as 

depicted in section IV. 

 

These models are simulated subject to both step and square 

input signals. Output signals are analysed and the behaviour 

of the system models are compared based on  rise time, peak 

amplitude, settling time and final state value of the output 

signal.  

II. RLC COMPONENTS STATE SPACE (SSM) MODEL 

 

The relation between the voltage VR, across the resistor, R 

and the current through it, IR caused by potential difference 

across it, is ohmic in nature [6], [7] and is described in (1) 

 

1
;R R R R RI V I V RI

R
   

                    (1)       

                  

  Unlike in resistors, the voltage across the capacitor 

changes with respect to time.The rate at which the voltage 

across the capacitor changes with respect to time is 

proportional to the charging current through it and inversely 

proportional to the magnitude of its capacitance[6],[7] as 

shown in (2) 
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( ) ( )1
( ) ( )c c

c c

dV t dV t
i t i t C

dt c dt
  

            (2)  

 

For an inductor, the charging current changes with time 

and is proportional the voltage applied across it and inversely 

proportional to the magnitude of its inductance [6], [7] as 

shown from equation (3) 

 

( ) ( )1
( ) ( )L L

L L

di t di t
V t V t L

dt L dt
  

           (3) 

 

       

  Having already described the behavior of each RLC 

component in ODE perspective in section II, we model entire 

cable in sections III and IV based on these RLC 

fundamentals.   

III. INCREASED LENGTH CABLE MODEL 

 

   Based on individual RLC component state space 

representation in (1), (2) and (3), the circuit in (fig.1b) can be 

represented in state space in expressions (4). 
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  It is a common practice to express such models in a 

standard state space model in (7) and we do so by 

assumptions in (5) to get expression (6) according our circuit 

in fig.1b. 

 

c 1 L1 2 L2 3

o i

V (t)= x (t),i (t)= x (t),i (t)= x (t),

V (t)= y(t),andV (t)= u(t)
                     (5) 
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.

(t)= Ax(t)+ Bu(t)

y(t)= Cx(t)= Du(t)

X

                                          (7) 
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For simplicity, based on assumptions (8), respective SSM 

matrices are depicted in (9) 
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        A “2L” LENGTH CABLE MODEL 

 

   In this model, we duplicate the RLC components in fig 

(1b) along the transmission line to make it double length of 

the first model. The double length model (2L) is depicted in 

fig (2). By considering respective loops, we get expression in 

(10).   
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  We again represent expressions (10) in form of (7) to get 

(11) that makes it easier for simulations subject to input 

signals. 
.
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  Taking assumptions in (8) and (12), SSM matrices are 

depicted in (13) 
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IV. INCREASED RLC VALUES MODEL 

   While in section III, we duplicated lumped parameters in 

“1L” model along transmission length to make “2L” model, 

in this section we conceptualise the cable as if the RLC 

magnitude were increased but keeping its length “L” to 

develop model “2Va” model. 

 

  Based on expressions (6), (7) and (8), we double the 

values of RLC components associated with circuitry depicted 

in fig (1b) to obtain model (14) 
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V. CIRCUIT MODEL REPRESENTATION  

 

L is a Unit length of the cable in the model 

R is the resistance of the cable per unit length in Ω/L 

L is inductance of the cable per unit length in H/L 

C is capacitance of the cable per unit length in F/L  
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(b)  
Figure.1 an “L” length cable representation 
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Figure.2 a “2L” conceptualised length cable model 

 

VI.  SIMULATION RESULTS   

 

   For simulations, the following assumptions were made 

to investigate the model response subject to both step and 

square input signals. 

 

   R = 20 Ω/m, L = 0.01 H/m and C= 7.5 μF/m and the load 

is a100Ω resistor. It is worth mentioning that for a square 

wave, the signal used in our simulations was 220 V, a 50 Hz. 
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Figure .3 Step signal response for “1L” model  

 

 

 
Figure4. Square Signal response for “1L” model  

 

 
Figure5. Data statistics for figure 4 

 
Figure .6 Step signal response for “2L” model 

 

 

 
Figure7. Square input signal response for “2L” model 
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Figure8. Step signal response for “2Va” model 

 

 
 

Figure9. Square input signal response for “2Va”model 

 

 

Table 2 Vertical (Voltage) variable data statistics for 

square signal response  

 

M

o

d

e

l

  

Min Max Mn Mdn Mod Std Rng 

1

L 

-316.

4 

316.

4 

0.23

35 

55.7 -316

.4 

186

.3 

632.8 

2

L 

-588.

5 

583 0.14

51 

11.5 -558

.5 

248 1171 

2

V

a 

-244.

7 

244.

7 

0.92

67 

14.8

7 

-187

.5 

185

.3 

489.4 

 

The parameter values presented here are Minimum (Min), 

Maximum (Max), Mean (Mn), Mode (mod), Standard (Std) 

and Range (Rng) 

 

 

 

 

6. Conclusion  

 

The aim was to model, simulate a conceptualised a 

low-frequency-signal transmission cable by increasing RLC 

values versus increasing length by duplicating RLC 

component along the same conceptualised electrical signal 

transmission cable  and make a comparative analysis. 

 

Both step and square signal input responses showed that 

increasing length (“2L model”) had a poor response if quick 

settling system is required compared with doubling 

magnitude of RLC component. This delay in settling was due 

to high overshoot. 

 

Conceptually, duplicating RLC values along transmission 

line increases oscillations of an AC signal leading to under 

damped response thus, not suitable for quick response 

demanding controls systems. 
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