
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 3, March 2014

ISSN: 2278 – 7798 415
All Rights Reserved © 2014 IJSETR

Real Time Interfacing & Control techniques using an

open source
Jheel Shah, Prof Vinod P. Patel

Abstract—This paper shows one way of controlling any system

through development board with the help of open source

software Scilab. This paper presents a low-cost, reusable,

reconfigurable platform that enables integrated design and

implementation of embedded control systems. To minimize the

cost, free and open source software packages such as Linux and
Scilab are used.

Keywords—Scilab, Linux operating system, Real time control,

Development Board

I. INTRODUCTION

The cost of proprietary software, such as Matlab, is often

expensive. One solution for this is to use Scilab which is free

and open source software (FOSS) having powerful benefits and

simplicity in hardware interfacing, ease in implementation of

various soft controllers, etc. [5]

Scilab is a freely distributed and open source scientific

software package providing a powerful open computing

environment for engineering and scientific applications. It was

developed at INRIA as part of the Meta2 project and includes

hundreds of general purpose and specialized functions for

numerical computation, organized in libraries called toolboxes

that cover such areas as simulation, optimization, systems and

control, and signal processing. [1] Scilab includes hundreds of

mathematical functions. It has a high level programming

language allowing access to advanced data structures, 2-D and

3-D graphical functions.

Linux is one of popular version of UNIX operating system.

It is open source as its source code is freely available. It is free

to use. Linux was designed considering UNIX compatibility.

Its functionality list is quite similar to that of UNIX. [17]

 Embedded systems are playing an increasingly important

role in control engineering. Despite their popularity, embedded

systems are generally subject to resource constraints and it is

therefore difficult to build complex control systems on

embedded platforms.

Figure 1. Block diagram of Linux Operating System [17]

Traditionally, the design and implementation of control

systems are often separated, which causes the development of

embedded control systems to be highly time consuming and

costly. As this trend continues, the old way of developing

embedded control software is becoming less and less efficient.

Thus a low-cost, reusable, reconfigurable platform is

developed for designing and implementing embedded control
systems based on Scilab and Linux, which are freely available

along with source code. The platform can be built on different

development boards. [4]

The organization of this paper is as follows: Section II
describes the different methodologies for interfacing. Section

III describes interfacing and controlling using different

development boards. Section IV concludes the paper.

II. DIFFERENT METHODOLOGIES

A. Java Interface for Scilab[2]

Scilab can be interfaced with Java based on the jLab

environment. Here the interface is packaged as a Jar File by the

Scilab provider. So we can say, the service afforded by

interface is a set of method.

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 3, March 2014

ISSN: 2278 – 7798 416
All Rights Reserved © 2014 IJSETR

Figure 2. The architecture of the javasci.jar [2]

The Jar File consists of fourteen classes as follows:[7]

1. BadDataArgumentException

2. ClassPath

3. LibraryPath

4. SciAbstractArray

5. SciAbstractDataType

6. SciBoolean

7. SciBooleanArray

8. SciComplex

9. SciComplexArray

10. SciDouble

11. SciDoubleArray

12. Scilab

13. SciString

14. SciStringArray

B. Using Scilab for building of Virtual Lab[3]

This is one way to use Scilab software in the Internet

environment. It is based on the developed client-server

architecture. Since Scilab does not offer any Internet interface

it is necessary to find an alternative way to exploit it.

Communication can be through “shared file”, “Java Interface”,

“TCP sockets”, “pipes between processes”. Here

communication via TCP sockets is chosen.

The Scilab does not contain a tool for socket

communication. The solution is offered e.g. by the library

Socket Toolbox for scilab created by T. Reveyrand. [6] The

toolbox allows to connect on a listening TCP socket and to

send and receive data via this socket. The only disadvantage of

this toolbox is the fact that it doesn’t allow creating a listening

socket. It only allows to connect to a socket that already has the

status of “listening”. However, this problem can be easily

solved since the most of server side scripting languages, like
e.g. PHP language, supports packages, toolboxes or extensions

allowing a developer to gain full control (including creation

and destruction) of TCP connections. The data transfer

between server and client application can be accomplished

using sockets that enable direct approach to network protocols

of lower level. Actually, a socket creates a single unique

connection between two applications.

1) Server Side

 In general, a server represents the program application that

delivers a service to clients. It processes all requests and

commands and if it is required it ensures communication with

other external applications. Since we are going to communicate

with SciLab, in our case the external application is presented

by SciLab environment. Actually, the server application has 4

main tasks:

 It has to create, maintain and close connection with

SciLab.

 It has to reply to all requests from clients.

 It sends data to SciLab.

 It receives data from Scilab.

The core of the server side was developed in php scripting

language. The developed script (server.php) has to create the
socket to establish a unique connection with SciLab. Then, the

script executes SciLab program environment and automatically

also the script inside of SciLab (service.sce) to open the socket

connection using the socket that was created by the php script.

When the connection is accepted also by the server.php script,

everything is prepared for the communication. After the script

server.php receives preprocessed data from the client

application it sends the requested instructions as astring to

SciLab. The SciLab executes the received instructions and

sends back the computed result. It is also in a string form that is

sent for visualization to the client part of the whole application

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 3, March 2014

ISSN: 2278 – 7798 417
All Rights Reserved © 2014 IJSETR

2) . Client Side

The client application takes care about the interaction with

a user. It sends commands and parameters from the user to the

server and results from the server to the user.

 After the user enters and submits input parameters to the form

on the webpage, the request for their processing is

accomplished. The client side of the application is again

developed using php language. The script (client.php)

transforms the input from the user into SciLab instructions and

sends it via session variable to the script server.php. After

request processing the client.php script receives results from
the server script in a string form. This data are used for

visualization of results for the user. The dynamically generated

web page is created using JavaScript and CSS in combination

with Document Object Model approach. For the graphical

presentation we used more and more popular SVG format. It

Allows to process current data from server dynamically and it

gives us possibility to enhance velocity, flexibility and

interactivity of the generated graphics, e.g. signalize status of

Data, or update current data in time.

Figure 3. Communication between one server and several

clients [3]

Figure 4.Technical realization of the socket communication

[3]

III. SCILAB INTERFACE & CONTROL USING DIFFERENT

DEVELOPMENT BOARD

The use of embedded processors has the potential of

reducing the size and cost, increasing the reliability, and

improving the performance of control system.

A. EP9315 processor development board [4]

The development board used in this work is based on the

EP9315 processor from Cirrus Logic, as shown in Figure 5.

The EP9315 [16] is a highly integrated system-on-chip

processor for consumer and industrial electronic products. It

features an advanced 200 MHz ARM920T processor design

with a memory management unit, separate 16KB instruction
cache, 16KB data cache, 64MB SDRAM, and 32MB flash

memory. Linux, Windows CE and many other embedded

operating systems are supported. The ARM920T has 32-bit

microcontroller architecture, along with a five-stage pipeline,

and is capable of delivering impressive performance at very

low power. The key software packages used include Linux,

TinyX, JWM, and Scilab/Scicos. The flexibility, scalability,

reliability, and free nature of Linux have made it an

increasingly popular platform for a large number of

applications.

Figure5. EP9315 processor based development board

Scilab/Scicos was originally designed for PC-based

systems but not embedded ARM-Linux systems. Therefore, it

is necessary to port Scilab/Scicos onto the embedded platform.

Majority of core codes of Scilab are written in FORTRAN,

so first a cross-compiler is built for g77 in order to support
cross-compilation of GUI, for example. The GUI system of

Scilab/Scicos is based on X11, and therefore the X11 server

TinyX is included.

B. Arduino Galileo development board

 Intel® Galileo is the first in a line of Arduino-compatible

development boards based on Intel architecture. This

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 3, March 2014

ISSN: 2278 – 7798 418
All Rights Reserved © 2014 IJSETR

development board will be made available from November

2013. [14]

The platform is built on the Arduino Galileo development

board running a Linux operating system. The development

board used in this work is based on the Quark SoC X1000. i.e.

a single chip Pentium class system as shown in Figure 6. It is

the heart of this unit.

Figure 6 Intel Galileo development board

The Intel® Quark SoC X1000 Application Processor, is a

32-bit Intel Pentium-class system on a chip. It’s the first board

based on Intel® architecture designed to be hardware and

software pin-compatible with Arduino shields designed for the

Uno R3.ct. It also has the same I/O ports plus a full sized mini-
PCI Express slot, 100Mb Ethernet port, Micro SD slot, RS232

serial port, USB host and client ports and 8MByte flash RAM.

It also has a real time clock and a jumper that you can use to

add a battery backup for it. [16]

Galileo runs Linux out of the box. It comes in 2 flavors, the

default is a small Linux. By adding an SD card to the kit fully

featured Linux can be added. Intel Galileo can work with any

programming language that supports a .586 extension for x86

processors. Intel® Galileo currently runs on open source

firmware based on C programming language. GCC and ICC

compilers are supported. [15]

IV. CONCLUSION

It is possible to replace high cost propriety software with

free open source software. Combining the strengths of different

development boards & Scilab can offer new possibilities for

application development. It is possible to interface and control

system for an open source using different ways.

REFERENCES

[1] Liao Wenjiang, Dong Nanping and Fan Tongshun, “The Application of

Scilab/Scicos in the lecture of Automatic Control Theory,”IEEE

International Workshop on Open source Software for Scientific

Computation (OSSC), pp. 85-87, September 2009

[2] Lilan Wu, ,Jianling Gao and Xiaoyao Xie, “Java Interface for Scilab

Based on the JLab Environment,” IEEE, International Conference on

Anti counterfeiting, Security, and Identification in Communication, pp.

588-591, 20-22 Aug. 2009

[3] Zoltan Magyar and Katarina Zakova, “Using Scilab for Building of

Virtual Lab,” 9
TH

 IEEE International Conference on Information

Technology Based Higher Education and training (ITHET), pp. 280-

283, April 2010,

[4] Longhua Ma, Feng Xia and Zhe Peng, “Integrated Design and

implementation of Embedded Control Systems with Scilab,”K. Elissa,

“Title of paper if known,” unpublished.

[5] . Mayur jain, Sheetal Bhande, Aditya Chhatre, Amit Naik, Vishal Pande,

Prafulla Patil, “Control System Design Using Open source Software,”

International Journal of Engineering Research and applications, 30

march 2012.

[6] T. Reveyrand, The SOCKET Toolbox for Scilab,

http://www.reveyrand.fr/

[7] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine

Nikoukhah, “Modelling and Simulation in Scilab/Scicos,” Springer,2006

[8] Scilab [Online]: Available: http://www.scilab.org/.

[9] Scicos [Online]: Available: http:www.scicos.org.

[10] RTAI [Online].

Available: http://www.rtai.org;

[11] Comedi [Online].

Available: http://www.comedi.org/.

[12] Links to companies [Online].

Available: http://www.linuxdevices.com/ .

[13] Comedi/Comedilib Tutorial and User Manual “comedilib.pdf”.

Available: http://www.comedi.org/.

[14] Link to companies [online]

Available: www.adafruit.com/blog

[15] https://communities.intel.com/message/207619

[16] http://arduino.cc/en/ArduinoCertified/IntelGalileo

[17] http://www.tutorialspoint.com/operating_system/os_linux.htm

http://www.reveyrand.fr/
http://www.comedi.org/
http://www.adafruit.com/blog
https://communities.intel.com/message/207619
http://arduino.cc/en/ArduinoCertified/IntelGalileo
http://www.tutorialspoint.com/operating_system/os_linux.htm

