An Efficient Framework for Change Detection in Synthetic Aperture Radar Images

Roopa Gokul, Sira Salim, Jean P Johny and Reshma S

Abstract—In this paper, we put forward a novel framework for change detection in synthetic aperture radar (SAR) images. The approach is based on an image fusion strategy and a novel fuzzy clustering algorithm. The significance of image fusion technique is to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. For this we are implementing Contourlet fusion technique which provides better visual quality for fused image. And also the fused image can preserves more information about the edges and textures of SAR image. Our aim is to restrain the background information and enhance the information of changed regions in the fused image. So initially Contourlet fusion algorithm is applied on ratio images to get a fused difference image. The approach then classifies changed and unchanged regions in the difference image by applying Markov Random Field fuzzy c-means (MRFFCM) clustering algorithm. This algorithm focuses on modifying the membership instead of modifying the objective function. Hence it is computational simple and less time consuming.

Index Terms—Change detection, Synthetic aperture radar, Contourlet image Fusion, Markov random field, Fuzzy clustering.

I. INTRODUCTION

Image change detection means detecting the changes in images of the same scene that are taken at different times. This is of widespread interest due to a large number of applications in diverse disciplines, such as remote sensing, medical diagnosis, and video surveillance. The images generated by synthetic aperture radars (SAR) are used due to their independence of atmospheric and sunlight conditions [8]. So they have become valuable and indispensable sources of information in change detection. Generally, change detection in SAR images is the process of the analysis of two co-registered SAR images acquired over the same geographical area at different times. Such analysis is unsupervised when it to discriminate between unchanged and changed areas without any prior knowledge about the scene.

The procedure of change detection in SAR images can be divided into three steps [8]: 1) Image preprocessing, 2) generation of a difference image (DI) from multitemporal images, and 3) analysis of the DI. The tasks of the first step mainly include coregistration, geometric corrections, and noise reduction. In the second step, two coregistered images are compared pixel by pixel to generate the difference image. In the third step, changes are detected by applying a clustering algorithm. The performance of SAR image change detection mainly depends on the quality of the difference image and the accuracy of the classification method.

For the remote sensing images, differencing (subtraction operator) and rationing (ratio operator) are well-known techniques for producing a difference image. In differencing, changes are measured by subtracting the intensity values pixel by pixel between the considered images. In rationing, changes are obtained by applying a pixel-by-pixel ratio operator on the temporal images.

However, in the case of SAR images, the ratio operator is typically used instead of the subtraction operator since the image differencing technique is not adapted to the statistics of SAR images and non robust to calibration errors. In addition, because of the multiplicative nature of speckles, the ratio image is usually expressed in a logarithmic or a mean scale. In general, the underlying idea of the optimal difference image is that unchanged pixels exhibit small values, whereas changed areas exhibit larger values. So the optimal difference image should restrain the unchanged areas and should enhance the information of changed regions in the greatest extent. In order to solve this problem, Contourlet image fusion technique is introduced to generate the difference image by using complementary information from the mean-ratio image and the log-ratio image. The information of changed regions reflected by the mean-ratio image is relatively flat on account of the logarithmic or a mean scale. Hence, it can be concluded that the new difference image fused by mean-ratio image and log-ratio image provide better information content than the individual difference images.

In the difference image analysis phase, changes are usually detected by applying a decision threshold to the histogram of the difference image. Several thresholding methods have been proposed in order to determine the threshold in an unsupervised manner. SAR images are usually corrupted by speckle noise and its existence makes it difficult to separate

Manuscript received April 1, 2014.

Roopa Gokul, Post Graduate student, FISAT, Mookkannoor, kerala India-683577.
Sira Salim, Post Graduate student, FISAT, Mookkannoor, kerala India-683577.
Jean P Johny, Post Graduate student, FISAT, Mookkannoor, kerala India-683577.
Reshma S, Post Graduate student, FISAT, Mookkannoor, kerala India-683577.
the two classes. Therefore, a relatively primary approach cannot perform the analysis so well. The DI-analysis step can be looked on as the process of image segmentation. We have got two conventional methods for that, the threshold method and the clustering method. In the threshold method, some essential models are usually established to search for a best threshold to divide DI into two classes. And in the clustering method, we don’t need to establish a model, so it is more convenient and feasible. One of the most popular clustering methods for image segmentation is the fuzzy c-means (FCM) algorithm, which can retain more image information than hard clustering in some cases. MRF provides a basis for modeling information about the mutual influences among image pixels. An important issue of MRF is the energy function which directly characterizes the way to utilize spatial context. Considering the severe speckle noise in SAR images, determining the relationship among pixels is a complex process. Such complexity appears as two aspects: firstly, in the homogeneous region in DI, outliers disturb the utilization of the energy function, and it is not easy to stem such corruption; secondly, in the heterogeneous region in DI, an obscure boundary will emerge between two classes instead of an exact one [1]. So in order to reduce the effect of speckle noise, Markov Random Field FCM algorithm [1] is used here. This approach does not improve FCM by modifying the objective function. Instead, it focuses on the modification of the membership to reduce the effect of speckle noise. It is computationally simple, its objective function can just return to the original form of FCM which leads to its less time consumption than some other improved FCM algorithms. It modifies the membership of each pixel by introducing the information provided by the spatial context, i.e., the neighbors of the central pixel as well as their interrelationship are concerned in the process of using MRF.

The rest of this paper is organized as follows. Section II describes the previous works. Section III describes the proposed methodology in detail. Finally, conclusion is given in Section VI.

II. LITERATURE SURVEY

The performance of the proposed system mainly depends on the quality of difference image (DI) & accuracy of the classification method. Two conventional methods for difference image analysis are 1) Threshold method, 2) Clustering method. In the threshold method [3], some essential models are usually established to search for a best threshold to divide DI into two classes. Eg.: minimum-error thresholding algorithm (K&I), expectation maximization (EM) algorithm. Advantages of this approach are that it is simple and effective tool to separate objects from the background. But this approach Lack objective measures to assess the performance. Noise, ambient illumination, busyness of gray levels within the object and its background, inadequate contrast etc complicate the thresholding operation. Also improper thresholding causes blotches, streaks etc on the resulting image.

But in the clustering method, we don’t need to establish a model, so it seems to be more convenient and feasible. One of the most popular clustering methods for image segmentation is the fuzzy c-means (FCM) algorithm [4], which can retain more image information than hard clustering in some cases. In the standard FCM algorithm, a function that is related to the membership and dissimilarity is minimized in each iteration process, and the function is what is usually referred to as the objective function. Being able to retain more information from the original image, FCM has robust characteristics for ambiguity. However, the standard FCM algorithm is very sensitive to noise since it does not consider any information about spatial context.

Later many researchers have incorporated the local spatial and local grey level information into the original FCM algorithm to compensate this defect of FCM. In 2002 M. Ahmed, S. Yamany, N. Mohamed proposed FCM_S [5] which incorporated the local spatial and local grey level information into the original FCM algorithm. Advantages of this approach are, it was proven to be effective for image segmentation and it enhances their insensitiveness to noise. Problem with this approach is that it still lacks enough robustness to noise and outliers especially in absence of prior knowledge of the noise. In their objective functions there exists a crucial parameter α which is selected generally through experience. Also the time of segmenting an image is dependent on the image size.

Later in 2007 Chen and Zhang developed FGFCM [6] (fast generalized fuzzy c-means clustering algorithms). It incorporates the spatial information, the intensity of the local pixel neighborhood and the number of grey levels in an image. Use a new factor as a local similarity measure & remove the empirically-adjusted parameter of previous algorithm. Now the segmenting time is only dependent on the number of the gray-levels. Also this algorithm is relatively independent of the types of the noise and the value of new factor can be automatically determined. But still FGFCM has a crucial parameter ‘a’ which is usually obtained using trial-and-error method.

In 2010 S. Krinidis and V. Chatzis proposed FLICM [7] (fuzzy local information c-means clustering algorithm). It uses a fuzzy local similarity measure which aimed at guaranteeing noise insensitiveness and image detail preservation. Here a novel fuzzy factor G is used to improve clustering performance. It can automatically determine the spatial and gray level relationship, it improves the image segmentation performance, it is free of the empirically adjusted parameters, and also this algorithm is relatively independent of the types of noise. Balance among image details and noise is automatically achieved.

In 2012 Maoguo Gong et al proposed RFLICM (Reformulated FLICM) [8] which improved the performance of FLICM. Complementary information from the mean-ratio image and the log-ratio image is utilized to fuse a new difference image. In RFLICM It introduces a new Reformulated factor as a local similarity measure to make a tradeoff between image detail and noise. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and to reduce

ISSN: 2278 – 7798

All Rights Reserved © 2014 IJSETR
the effect of speckle noise. This is relatively insensitive to probability statistics model. It provides accurate detection of foreground changes by fusing log ratio and mean ratio image. It is less sensitive to noises. Also FLICM is able to incorporate the local information more exactly.

In [9], authors proposed another clustering method where they used a new way for utilizing the spatial context for spatiotemporal fuzzy-control system. This SCFCM method was developed by both adding some complicated terms in the objective function and modifying the way to compute the clustering centers. In [10], the authors developed new approach by fusing Markov spatial constraint field and the fuzzy segmentation information resulting from FCM. Later in [11], FCM along with MRF was used in wavelet domain for the purpose of image segmentation.

Later they proposed MRFFCM (Markov Random Field FCM) [1]. In order to reduce the effect of speckle noise, a novel form of MRF energy function with an additional term is established to modify the membership of each pixel. And the degree of modification is determined by the relationship of the neighborhood pixels. Approach focuses on modifying the membership instead of modifying the objective function. It is computational simple in all the steps involved. Its objective function can just return to the original form of FCM, which leads to its less time consumption than that of some recently improved FCM algorithms obviously. Also this approach modifies the membership of each pixel according to a novel form of MRF energy function through which the neighbors of each pixel as well as their relationship are concerned with.

In this work we propose a new framework for change detection in SAR images. Here first we produce a difference image by applying Contourlet image fusion [2] on mean ratio and log ratio image. Then we apply MRFFCM algorithm [1] on fused difference image to classify changed and unchanged region.

III. PROPOSED METHODOLOGY

Image change detection is the process of identifying the changes between images of the same scene taken at different times. Change detection in SAR images is the process of the analysis of two co-registered SAR images acquired over the same geographical area at different times. Such analysis is unsupervised when it aims to discriminate between two opposite classes which represent unchanged and changed areas without any prior knowledge about the scene. It consists of 3 steps: 1) Image preprocessing 2) Producing difference image between the SAR images 3) Analysis of the difference image.

The tasks of the first step mainly include coregistration, geometric corrections, and noise reduction. Image registration is the process of transforming different sets of data into one coordinate system. Data may be multiple photographs, data from different sensors, times, depths, or viewpoints. Registration is necessary in order to be able to compare or integrate the data obtained from these different measurements. Image Geometry Correction (often referred to as Image Warping) is the process of digitally manipulating image data such that the image’s projection precisely matches a specific projection surface or shape. In the second step, two coregistered images are compared pixel by pixel to generate the difference image. In the DI-generation step, the logarithmic operator is characterized by enhancing the low-intensity pixels while weakening the pixels in the areas of high intensity therefore, the information of changed regions that is obtained by the log-ratio image may not be able to reflect the real changed trends in the maximum extent because of the weakening in the areas of high-intensity pixels. The underlying idea of the optimal difference image is that unchanged pixels exhibit small values, whereas changed areas exhibit larger values. Mean-ratio shows the changed region but it doesn't enhance it. Result is better than that of log ratio operator. In order to address this problem, in this paper we use Contourlet image fusion technique to generate fused difference image by fusing log-ratio and mean-ratio image for better change detection. In the third step a Fuzzy clustering algorithm is used for classifying changed and unchanged regions in the difference image. The algorithm used is MRFFCM (Markov Random Field Fuzzy C-Means) [1]. Markov random field (MRF) serves as an opportune tool to introduce information about the mutual influences among image pixels in a powerful and formal way. MRFFCM does not improve FCM by modifying the objective function instead; it focuses on the modification of the membership to reduce the effect of speckle noise. It is of computational simplicity in all the steps involved, and its objective function can just return to the original form of FCM which leads to its less time consumption than that of some recently improved FCM algorithms obviously. It modifies the membership of each pixel by introducing the information provided by the spatial context; the neighbors of the central pixel as well as their interrelationship are concerned in the process of using MRF. Fig 1 shows the overall change detection process.
A. Mean Ratio and Log Ratio operators

The mean-ratio operator should be applied to generate the mean-ratio image. It can be defined as follows:

\[X_m = 1 - \min \left(\frac{\mu_1}{\mu_2} \right) \]

where \(\mu_1 \) and \(\mu_2 \) represent the local mean values of the pixels in a neighborhood of point \((i,j)\) of multitemporal SAR images \(X_1 \) and \(X_2 \), respectively. Above equation shows that the mean-ratio operator produces difference image by using the local mean information of each pair of neighbouring pixels. The underlying idea of the optimal difference image is that unchanged pixels exhibit small values, whereas changed areas exhibit larger values. Mean-ratio shows changed region but it doesn’t enhance it. Result is better than that of log ratio operator. Similarly the absolute valued log-ratio can be defined as:

\[X_l = | \log \frac{X_2}{X_1} | = | \log X_2 - \log X_1 | \]

Where, \(\log \) stands for natural logarithm. The logarithmic operator is characterized by enhancing the low-intensity pixels while weakening the pixels in the areas of high intensity therefore, the information of changed regions that is obtained by the log-ratio image may not be able to reflect the real changed trends in the maximum extent because of the weakening in the areas of high-intensity pixels.

B. Contourlet Fusion

Image fusion is a process of fusing two or more images into a single image. So this single fused image will be more informative than the input images. The significance of image fusion in change detection is to produce a single difference image by combining log ratio and mean ratio images. The difference image produced by a log ratio and mean ratio alone cannot convey the real changes exactly, therefore the we produce a new difference image by fusing log ratio and mean ratio using contourlet image fusion technique [2]. The reason why we use contourlet fusion is that, unlike other fusion technique it does not produce noise in fused image and also it preserves edges of the image. So information loss is less. The main properties of contourlet Transform is, multi resolution, localization, directionality anisotropy and local brightness, etc. It also provides smoothness in a fused difference image [2]. Contourlet image fusion technique has got two steps 1) Transformation 2) Decomposition. The method is described as follows.

1) Transformation method

In this step we are using double filter bank for the decomposition of subbands. It consists of laplacian pyramid and directional filter bank. Hence it is also known as pyramidal directional filter bank. Laplacian pyramid filter and Directional Filter Bank is used for capturing the edge point and to link the point discontinuities in the image respectively.

On each input image we perform subband de-composition. Fig. 3 shows the laplacian pyramid decomposition.

2) Decomposition Method

In this step the decomposed subbands of transformation stage are fused by applying fusion rules. We have got separate fusion rules for fusing low-pass and high-pass band. The coefficients in the lowpass subband reflect the profile features of the source image. The selection and averaging modes are used to compute the final coefficients.

The local energy \(E(x,y) \) is calculated by [2]

\[E(x,y) = \sum_{m} \sum_{n} a_r (x+m, y+n)^2 \overline{W}(m,n) \]

Where \((x,y)\) denotes the current contourlet coefficient, \(W(m,n) \) is a template of size 3*3. High frequency subbands reflects the salient features of the source image such as curves and lines. Here we use Average method for fusing the high frequency subbands. It is deﬁned as follows [2]

\[E^r_{jk}(x,y) = d_{rjk}(x,y) \]

Where \(E^r_{jk}(x,y) \) is the local energy, \(d_{rjk}(x,y) \) is the high frequency coefﬁcient. Then we apply inverse contourlet decomposition method to obtain the final fused image. Thus we have obtained the final fused difference image. Now we apply Markov Random Field Fuzzy C-means Clustering algorithm to classify the regions of difference image into changed and unchanged class.

C. Main procedure of MRFFCM

For difference image analysis Clustering Method is used. The algorithm used is MRFCC algorithm (Markov Random Field Fuzzy C-Means) [1]. The algorithm analyzes the difference image and classifies the changed and unchanged region. The main procedure of MRFFCM is as follows:

1. In the first iteration \(k=1\), derive the mean \(\mu_i \) and the standard deviation \(\sigma_i \) of the two classes through the K&I method. And the initial membership matrix \(\{ u_{ij} \} \) is generated by utilizing the original FCM algorithm unmodified \(i=0, c \). Then by means of hard division (the threshold of which is 0.5), generate the

Fig. 2.Block diagram of construction of Laplacian pyramid

First the input image is fed to a low pass analysis filter (H) and then down sampled to lowpass Sub-band. Then this image is up sampled and applied to a synthesis filter (G). Finally subtracting the output of the synthesis filter and input image we get highpass subbands. It also allows further decomposition of high frequency bandpass images. This bandpass images are passed through the directional filterbank which captures directional information accurately. Therefore in this transformation stage we decompose the image into directional subbands at multiscale.
same-kind-number matrix \(\{n_i \in \partial i \} \), and each element of the matrix denotes the number of the neighborhood pixels belonging to \(i \).

2. In the \(k \)th iteration, establish the energy matrix \(\{E_{i}^{k} \} \).

\[
E_{ij}^{k} = -\ln(\mu_{ij}) + \beta_j(\mu_{ij} - n_{ij})
\]

(5)

\[
t_{ij} = \epsilon \ln(n_{ij} - 0.5)
\]

(6)

\(\beta \) is an adjusting parameter and \(q = x_j \).

3. Using Gibbs expression, compute the pointwise prior probabilities of the MRF, and get the point wise prior probability matrix \(\{\pi_{ij}^{k} \} \).

\[
\pi_{ij}^{k} = \frac{\exp(-E_{ij}^{k})}{\sum_{j} \exp(-E_{ij}^{k}) + \exp(-E_{ij}^{k})}
\]

(7)

4. Compute the conditional probability \(\{p_{ij}^{k} \} \) and then generate the distance matrix \(\{d_{ij}^{k} \} \).

\[
p_{ij}^{k}(y_j|\mu_{i}, \sigma_{i}^{2}) = \frac{1}{\sqrt{2\pi}\sigma_{i}^{2}} \exp\left[-\frac{(y_j - \mu_{i})^{2}}{2\sigma_{i}^{2}} \right]
\]

\[
d_{ij}^{k} = -\ln[p_{ij}^{k}(y_j|\mu_{i}, \sigma_{i}^{2})]
\]

(8)

(9)

5. Compute the objective function \(\{j_{ij}^{k} \} \). In case of convergence exit and output \(\{u_{ij}^{k} \} \), otherwise go to step 6.

\[
j_{ij}^{k} = \frac{1}{\sqrt{2\pi}\sigma_{i}^{2}} \exp\left[-\frac{(y_j - \mu_{i})^{2}}{2\sigma_{i}^{2}} \right] + \frac{1}{\sqrt{2\pi}\sigma_{i}^{2}} \exp\left[-\frac{(y_j - \mu_{i})^{2}}{2\sigma_{i}^{2}} \right]
\]

(10)

\[
\sum_{l=1}^{I_x} \left| j_{ij}^{k} - j_{ij}^{k-1} \right| \leq \delta
\]

(11)

Where \(I_x \) is the DI generated by Contourlet fusion and \(\delta \) is the convergence threshold.

6. Compute the new membership matrix \(\{u_{ij}^{k+1} \} \).

\[
u_{ij}^{k+1} = \frac{\pi_{ij}^{k} \exp(-d_{ij}^{k})}{\sum_{j} \pi_{ij}^{k} \exp(-d_{ij}^{k}) + \sum_{j} \pi_{ij}^{k} \exp(-d_{ij}^{k})}
\]

(12)

7. Update the mean and the standard deviation as \(\mu_{i}^{k+1} \) and \(\sigma_{i}^{k+1} \) respectively. \(k = k+1 \). Goto step 2.

\[
\mu_{i}^{k+1} = \frac{\sum_{j \in \partial i} u_{ij}^{k} y_j}{\sum_{j \in \partial i} u_{ij}^{k}}
\]

(13)

\[
\sigma_{i}^{k+1} = \sqrt{\frac{\sum_{j \in \partial i} u_{ij}^{k} y_j - \mu_{i}^{k+1}}{\sum_{j \in \partial i} u_{ij}^{k}}}
\]

(14)

IV. CONCLUSION

In this paper, we have presented a novel framework for change detection in SAR-images. This approach is based on image fusion and fuzzy clustering algorithm. Our aim is to restrain the unchanged areas and to enhance the information of changed regions in the greatest extent. The information of changed regions reflected by the mean-ratio image is relative in accordance with the real changed trends in multitemporal SAR images. On the other hand, the information of background obtained by the log-ratio image is relatively flat on account of the logarithmic transformation. Hence, complementary information from the mean-ratio image and the log-ratio image is utilized to fuse a new difference image. Contourlet image fusion is used for that, which provides better visual quality fused image. And also the fused image can preserves more information about the edges and textures of SAR image. After generating the DI we apply MRFFCM algorithm to detect changed and unchanged region in the difference image. In order to reduce the effect of speckle noise MRFFCM focus on modifying the membership instead of modifying the objective function. It is computationally simple in all the steps involved and less time consuming.

Thus in the proposed system the Contourlet fusion strategy can integrate the advantages of the log-ratio operator and the mean-ratio operator and gain a better performance. The change detection results obtained by the MRFFCM exhibits changed region more exactly than its preexistence since it is able to incorporate the local information more exactly.

REFERENCES

Sira Salim, BTech in Computer Science and Engineering from METS School of Engineering, Mala, Thrissur. Currently doing MTech at Federal Institute of Science and Technology, Mookkanmoor. Her research interests are Image Processing and Data Mining.

Jean P Johny, BTech in Computer Science and Engineering from Federal Institute of Science and Technology, Mookkanmoor. Currently doing MTech at Federal Institute of Science and Technology, Mookkanmoor. Her research interests are Image Processing and Network security.

Reshma S, BTech in Computer Science and Engineering from Federal Institute of Science and Technology, Mookkanmoor. Currently doing MTech at Federal Institute of Science and Technology, Mookkanmoor. Her research interests are Image Processing, Data structures and algorithms.