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Abstract— Frequent Itemset Mining is one of the exemplary 

data mining constraint in most of the data mining applications. 

It requires unmitigatedly extensive computations and I/O 

traffic capacity.    In this paper we attempt to represent one 

such distributed algorithm which will run on Hadoop – one of 

the latest most significant distributed frameworks which 

support mapreduce paradigm. The proposed approach takes 

into account quintessential characteristics of the Apriori 

algorithm related to the frequent itemset generation and 

through a block-based partitioning uses a dynamic workload 

management. First, we represent a innovative algorithm 

for determination of extensive itemsets which uses single 

pass over the data than classical algorithm. Second, we 

evaluate the idea of item combination which can 

contribute to the debased adroitness of the algorithm and 

enables to abbreviate database size at earlier stage 

thereby reducing computational cost for later processing. 
The algorithm substantially enhances the performance and 

achieves high scalability compared to the existing distributed 

Apriori based approaches. Proposed algorithm is implemented 

and tested on large scale datasets distributed over a cluster. 

 

Index Terms— Apriori Algorithm, Frequent Itemset 

Mining, Hadoop, Map Reduce, Distributed Computing.  

 

 

I. INTRODUCTION 

Data mining is the effective process of discovering 

patterns which are previously unknown and hidden in large 

datasets. Current developments and advances in many 

growing areas of engineering, science, business, etc. are 

producing tremendous amount of data day by day resulting in 

heavy requirement of storage. The efficiency to process, 

analyze, and understand these datasets is at the need of 

several disciplines, including parallel and distributed 

computing. This is due to their inherent distributed nature, 

the quality of their content, the size of the datasets and the 

heterogeneity etc. One of the most important areas of data 

mining is association rule mining; it is a task is to find all 

items or subsets of items which frequently occur and the 

relationship between them. This is achieved in two main 

steps: finding frequent itemsets and generating association 

rules. Frequent Itemset Mining (FIM) tries to discover 

information from database based on frequent occurrences of 
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an event according to the minimum frequency threshold 

provided by user. 

   

Due to limitations of main memory, FIM becomes 

inefficient on large databases. This problem can be solved by 

using Apriori algorithm [1][8][13], where database is 

scanned multiple times for frequency count of each size of 

candidate itemsets. Unluckily, single machines are unable to 

fulfill the memory requirements for handling the complete 

set of candidate itemsets. Also existing algorithms care to 

control the output and runtime by increasing the minimum 

frequency threshold, automatically reducing the number of 

candidate and frequent itemsets [9]. 

Parallel programming is getting utmost importance to 

deal with the massive amounts of data, which is produced 

and consumed every day. Parallel programming 

architectures and supporting algorithms, can be grouped into 

two main categories viz. shared memory and distributed 

(share nothing). On shared memory systems, all processing 

units can concurrently access a shared memory area. While, 

distributed systems are composed of processors that have 

their own internal memories and communicate with each 

other by passing messages [9]. It is easier to port algorithms 

to shared memory parallelism, but they are typically not 

scalable enough [5][6]. Distributed systems, allow quasi 

linear scalability for well adapted programs. However, it is 

not always easy to write or even adapt the programs for 

distributed systems. 

Current algorithms like Apriori are good for the 

databases that are small in size, but if these algorithms are 

executed on very large databases in parallel on distributed 

systems the performance can be improved significantly. 

Hadoop is an open source distributed framework which is 

designed based on the Google’s Map-reduce programming 

model [32][33]. Hadoop is capable of analyzing large amount 

of data. Hadoop is developed by keeping most of the things in 

mind like-large dataset, write once read many access models, 

moving computation is cheaper than moving data etc. 

Apache Hadoop wins terabyte sort benchmark in July 2008. 

All this capability makes Hadoop suitable for most mining 

problems. Hadoop has its own file system called Hadoop 

Distributed File system (HDFS) which is capable of running 

on commodity hardware with high fault tolerance ability. 

Data replication is one of the important features of HDFS, 

which ensures data availability and automatic re-execution 

on multiple node failure. In this paper we have proposed 

algorithm which will use the power of Hadoop for mining the 

frequent Itemset. 

 

This paper is organized as follows: Section II is for 

background and literature survey, Section III describes the 
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Problem Statement and application of Hadoop to solve this 

problem and implementation details of the proposed system 

whereas section IV has proposed algorithm and analytical 

discussion. Section V describes about data set used and 

finally Section VI concludes this paper. 

 

 

I. BACKGROUND 

Frequent itemsets is considered to be very important in 

many data mining tasks that try to discover interesting 

patterns from databases, such as correlations, association 

rules, episodes, sequences, clusters, classifiers and many 

more where association rule mining is the most popular 

problem [7][8]. The original stimulation of interest for 

searching association rules came from the need of detail 

examination of so called supermarket transaction data, i.e. to 

study customer behavior in terms of the purchased products. 

Association rules tells how frequently the items are 

purchased together. For example, an association rule (bread) 

-> (eggs) (80%) states that four out of five customers that 

bought bread also bought eggs. Such rules can be matter of 

importance for decisions about store layout, product pricing, 

promotions and many others. 

With the introduction of algorithm by Agrawal et al. 

since 1993[1][2], the problem of mining the frequent itemset 

and association rule are considered to be of utmost 

important[9][11]. Within the past decade, numerous 

research papers have been published presenting novel 

algorithms or improvements on existing algorithms to solve 

these mining problems more efficiently[3][4][6].  

Many variants and improvements of this algorithm have 

been developed suitable in parallel and distributed systems, 

such as CD [1][7], FDM [21]. Some distributed approaches 

are based on different sequential algorithms, such as the 

FP-Growth algorithm[2][18], the D Sampling algorithm, 

which is combination of the Sampling algorithm and the 

DDM approach [31]. 

A. The Apriori Algorithm 

AIS algorithm by Agrawal et al. was the first algorithm 

which generates all frequent itemsets and confident 

association rules with introduction of this mining problem 

[1]. Agrawal et al. improved the same algorithm and 

renamed it as Apriori which makes use of monotonicity 

property of the support of itemsets and the confidence of 

association rules [2][7]. 

Apriori algorithm is a classic algorithm for finding 

frequent itemsets which is mainly based on level wise search 

and iteratively discover frequent itemsets with size from 1 to 

k-itemset. 

Basic idea is to minimize the search space by using the 

Apriori principle: 

 An itemset must be frequent if and only if all of its 

subsets are frequent. 

 That is, if {AB} is a frequent itemset, then both {A} 

and {B} should be frequent. 

 

If there are n 1-itemsets that satisfy your minimum support, 

Apriori and many other algorithms must consider 

n*(n-1)/2      2-itemsets. This of course gets rather 

expensive. In Apriori, the 2-itemsets often is the largest and 

most expensive step and 3-itemsets may be worse. 

B. A Frequent-Pattern Tree Approach 

Mining frequent patterns in time-series databases, 

transaction databases, and various kinds of databases has 

been studied and analyzed popularly in data mining research. 

Moreover, candidate set generation is still very expensive, 

especially when we deal with large number of patterns and / 

or long patterns [2].  J. Han, J. Pei, and Y. Yin had proposed 

a novel frequent-pattern tree (FP-tree) structure [18]. This is 

an extended prefix-tree structure used for storing compressed 

and crucial information about frequent patterns. It uses an 

efficient FP-growth mining approach which is FP tree based, 

focusing on the concept of pattern fragment growth for the 

complete set of frequent patterns. 

The main advantage of FP-growth is that each linked list, 

starting from an item in the header table representing the 

cover of that item, is stored in a compressed form [7]. 

Unfortunately, to accomplish this gain, it needs to maintain a 

complex data structure and perform a lot of dereferencing 

and also the FP-tree representation is often much larger. 

 

C. Sampling 

 

The sampling algorithm, proposed by Toivonen [30], 

performs at most two scans through the database by picking 

a random sample from the database, then finding all 

relatively frequent patterns in that sample, and then 

verifying the results with the rest of the database. In the cases 

where the sampling method does not produce all frequent 

patterns, the missing patterns can be found by generating all 

remaining potentially frequent patterns and verifying their 

supports during a second pass through the database. By 

decreasing the support threshold, the probability of such a 

failure can be avoided. However, for a reasonably small 

probability of failure, the threshold must be drastically 

decreased, which can cause a combinatorial explosion of the 

number of candidate patterns. 

 

D. Partitioning 

 

The Partition algorithm, proposed by Savasere et al. uses 

an approach which is completely different from all previous 

approaches [20]. Database is stored in main memory using 

the vertical database layout and the support of an itemset is 

computed by intersecting the covers of two of its subsets. 

More specifically, for every frequent item, the algorithm 

stores its cover. To compute the support of a candidate 

k-itemset I, which is generated by joining two of its subsets 

X, Y as in the Apriori algorithm, it intersects the covers of X 

and Y , resulting in the cover of I. 

Of course, storing the covers of all items actually means 

that the complete database is read into main memory. For 

large databases, this could be impossible. Therefore, the 

Partition algorithm uses the following trick. The database is 

partitioned into several disjoint parts and the algorithm 
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generates for every part all itemsets that are relatively 

frequent within that part, using the algorithm described in 

the previous paragraph and shown in Algorithm 4[20]. The 

parts of the database are chosen in such a way that each part 

fits into main memory on itself. 

The algorithm merges all relatively frequent itemsets of 

every part together. This results in a superset of all frequent 

itemsets over the complete database, since an itemset that is 

frequent in the complete database must be relatively frequent 

in one of the parts. Then, the actual supports of all itemsets 

are computed during a second scan through the database. 

Again, every part is read into main memory using the vertical 

database layout and the support of every itemset is computed 

by intersecting the covers of all items occurring in that 

itemset. 

 

II. APPROACH DESCRIPTION 

This section defines the problem definition, proposed 

algorithm, system and implementation and gives an 

analytical discussion that describes the proposed approach. 

 

A. Problem Definition 

 

The mathematical presentation of the basic concept of 

support count in apriori algorithm presented in [1]. Let I = {i1, 

i2, i3,…..,im} be the set of items. Let T = {t1, t2, t3,….,tn} be 

the set of transactions, where each transaction t is a set of 

items such that t  I. The item X has support s in the 

transaction set T is s% of transactions contain X denoted as    

s = support(X). An association rule can be defined as AB, 

where {A, B}   I and A  B =. The support of rule AB is 

support (A  B). The problem of mining association rule is to 

find all the rules that satisfy a user specified minimum 

support threshold. The itemset X is said to be frequent if its 

support is greater than or equal to the user defined minimum 

support threshold and also all of its subsets are also frequent. 

Block abstraction policy is very beneficial for a 

distributed file system. First, for large datasets, it is not 

required that the blocks from a dataset to be stored on the 

same disk, so they can take advantage of any of the disks in 

the cluster. In fact, it would be possible to store a single file 

on an HDFS cluster whose blocks filled all the disks in the 

cluster [32][33]. Second, for more simplified subsystem a 

block can be considered as a unit of abstraction instead of a 

file. The storage management is also simplified since blocks 

are of fixed size, thus eliminates metadata concerns. Also, for 

providing fault tolerance and availability, blocks fit well with 

replication.  

Here we consider the block partitioning for the 

distribution of the datasets among all processing nodes. The 

dataset W is divided among M nodes with D transactions as 

{T1, T2, . . . , TM}. Here every block constitutes transactions 

that are assigned to the nodes. Let’s assume size of the 

partition Ti as Di. Now each partition Ti is divided into bi 

blocks {t1,t2,…,tbi }. The size of a block ti is defined as a 

default value of 64MB or according to the available memory 

in the processing node Ni and number of items, the average 

transaction width, and also the support threshold of a dataset. 

For a given minimum support threshold delta, an itemset x is 

globally frequent if it is frequent in W; its support x.support 

is greater than delta × D, and is locally frequent in a node Ni 

if it is frequent in Ti; its support x.support is greater than 

delta × Di. 

B. Proposed System 

As Hadoop requires data in the form of key-value pairs as 

input and output, it need to first arrange the transactional 

data into a suitable format where key is the transaction ID or 

offset of every line and values will be the comma separated 

list of items in that transaction. A simple two phase and 

loosely coupled architecture can be used to implement large 

range of data mining problem. Also for each phase in 

Map-Reduce, the data should be in the form of key and value 

pairs so we need to decide on the intermediate key value 

structure. These intermediate key value pairs are passed to 

the reduce phase at the end of the map phase to extract the 

frequency count of itemsets. 

Primarily, the algorithm consists of two phases. The first 

phase consists of the combination generation which can be 

seen as main-steps. Each main-step consists of a calculation 

on the local dataset blocks, or a received block in the 

formation of nCk combinations, and the potential 

communication exchanges for the workload and requests 

management. The second phase consists of a 

synchronization which is carried out at the end of the first 

phase for final results aggregation. In the beginning of the 

first phase, each node Ni is assigned a block of its dataset 

portion Di, its number of blocks bi, and a workload vector 

Vi. This information is used to determine a remote 

performance time when another processing node transfers a 

job request to some other node. 

 

 
Fig. 1: Map-Reduce Dataflow 

 

C. System Layout 

 

As per previous discussion, number of items in the 

dataset and the support threshold affects the computation 

complexity of the Apriori generation. It is clear that the 

combinations of candidate sets can exponentially grow in the 

Apriori generation process resulting in high demand in 

memory space. This gives rise either to a thrashing effect, 

which can remarkably degrade the performance, or unable to 

deal with the dataset if the implementation is not adapted to 

out of core computations. Each node performs then the nCk 

combination generation in its blocks independently of the 
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others. If a given node finishes its blocks processing, it 

selects a processor that has not issued its end notification yet. 

This policy achieves workload balance and fast execution 

time. 

 
Fig 2: Proposed system layout 

 

The proposed algorithm is based on Hadoop Map-Reduce 

programming. The database is organized in such a format 

that each line contains information for a particular 

transaction. In the proposed system is using 

TextInputFormat as Input format so each mapper will get 

each transaction as input. On receiving items in transaction 

the map phase will create  combination of all items in 

that transaction to reduce the database scan. For each such 

combination generated in map phase will emit the key as 

item combination and value as TransactionId.  

The output of all map phase will be given to the shuffling 

and sorting phase. To compare the item pair combination, we 

have written a customized comparator. Each reducer will get 

key as item pair and value as list of all transactions in which 

that item pair occur. For each such key value pair the reducer 

will  calculate the sum of all transaction in which that item 

pair occur and compare it with minimal support and emit the 

output item pair as key and value as null. In this way we get 

frequent item pairs with less database scan but it will increase 

the number of in-memory computation to generate 

combination. Following algorithm illustrates the mapper and 

reducer used for Apriori Algorithm. 
 

III. PROPOSED ALGORITHM 

The proposed algorithm is a basic distributed 

implementation of the Apriori algorithm and it is easy to 

adapt to map reduce. Algorithm 1 and 2 shows the pseudo 

codes of the appropriate mapper and reducer. Figure 3 gives 

the overview of the communication of the algorithm. 

 Input:- 

D-Dataset containing different transactions with 

itemsets 

S- Minimal Support 

 

 Algorithm 1:- Mapper of the proposed algorithm 

 

Map<Transaction_id, Itemset> 

{ 

//Split itemset based on space  

String items [] =itemset.split (“ ”)   

  

for (int k: items.length) 

 { 

  

//Generate nCk combinations to reduce database 

//scan 

item_combinations=generateCombinations(n,k)   

} 

 

for(item_combination:item_combinations) 

{ 

//For each combination emits combination as key 

//and  txn_id as value 

 emit(item_combination,txn_id)    

} 

} 

 

In Map function of the proposed algorithm every row of 

the given dataset is treated as single transaction and is 

assigned a unique transaction ID as  txnid. The itemsets in a 

transaction are split based on space. If any transaction has 

more than 9 items then that particular transaction is further 

split into sub transaction with subtxnid to speed up the 

process. Next step is to form all possible combinations for 

every transaction. Formation of   nCk combinations   reduces 

the database scans. Every combination is checked for 

symmetric property to avoid duplicate keys. The output of 

mapper is in the form of key value pair and is provide as input 

o the reducer.  

 

 

 Algorithm 2:- Reducer of the proposed algorithm 

 

Reduce<item_combination,Iterable<txnids> 

{ 

int count=0; 

//Count the occurrence of each txnid in which  

//item_combination occurs 

For( txnid:txnids) 

{  

 count++;  

} 

If(count>=minimum_support) 

{ 

//if count>=minimum_support  emit 

//item_combination as key, and Value will be null 

Emit(item_combination,NullWritable);     

} 

} 
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Input to the reducer is key value pair where key is itemset 

{2,3} and value is in the form of <1,1,1>  i.e. number of 

occurrences of that itemset. The reducer simply adds the 

values from key value pair and check for whether it satisfies 

the minimum support. If yes then that particular itemset is 

considered frequent and written in output file. 

A. Analytical Discussion 

 

Considering the basic Apriori implementation without 

workload management: 

Cost = bi pi 

This is actual cost of the first phase.  Thus pi can be 

calculated as summation of generation of candidate set of 

Aprori: 

Pi =  

 

According to the experimentation, pi,j will be similar in this 

implementation as the candidate sets are very close in both 

cases. So the generation cost for the first phase is: 

CostFIM  = bi  

where ci,j is the frequent itemsets, and (m-1) ci,j is the 

communication cost. In this approach one step of 

communications is directly proportional to the iteration. Here 

synchronization is implicit in each communication step. 

Now consider the case using the workload management, and 

the additional parameter  bci which is nothing but  the 

communication cost of a local block at a given site Ni. The 

maximum cost of the first phase of our approach is given by: 

Costmax = (arg maxiЄNi  bwi pi ) + bci + pj 

where bwi is the number of blocks at the site Ni, and pj is 

remote computation cost on the site Nj. 

Lemma. 

 CPmax Є [CFIM - ] 

 

Proof – when all the blocks are executed locally at a given 

site in the worst case. This means that CPmax is smaller or 

equal to argmaxi Є Ni bipi[27]. Consider the global 

candidates set GCi,j obtained using global pruning 

strategies, and the set LCi,j, the local candidates set obtained 

only by local pruning. Considering wide range of conditions 

and datasets, the set GCi,j is very close to the set LCi,j, for i = 

1, ..,M and j = 1, .., k. This means that the sum Pi =    

is quite similar in both cases. Accordingly considering the 

same conditions, CFIM − bipi = CFIM – bi Pi =    is 

bounded by bi .  Therefore, in the 

case of a single communication step, the difference  CPmax − 

CFIM can reach . 

 

It is clear from the test that communication steps 

costs and synchronization are very important . Further, in the 

case of data distribution for large datasets, dynamic workload 

management works very efficiently. The additional 

communications in forming combination are overlapped by 

local computations. In this approach, the adopted policy for 

dynamic job requests and data movement, tends to the 

additional communication overheads of forming 

combinations on blocks and are overlapped with the 

computations. 

 

 

IV. DATASET 

The experiment is done using two real data sets which are 

publicly available and have different characteristics. One of 

which is generated by IBM synthetic data generator [1][7] 

and other is the basket data set, contains transactions from a 

retail store. Table I shows the number of items and the 

number of transactions in each data set, and the minimum, 

maximum and average length of the transactions. 

Additionally, Table II shows for each data set the lowest 

minimal support threshold that was used in  experiments, the 

number of frequent items and itemsets, and the size of the 

longest frequent itemset that was found. 

A. Data Set Characteristics 

Table I. Number of Items & Transactions in each Data Set 

 
Data Set Σ |F1| |F| Max {  k | |Fk| > 0 } 

T20I7D500K 700 804 550126 18 

Retail Market 

Basket 

7 8051 285758 11 

 
Table II. Lowest Min Threshold for each Data Set   

 

Data Set #Items #Transactions Mn|T| Max|T| Avg|T| 

T20I7D500

K 

942 90000 4 77 39 

Retail Market 

Basket 

16470 88163 1 51 13 

 

The input which is expected to be given to the proposed 

model is as follows 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

24 25 26 27 28 29  

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  

38 39 47 48 38 39 48 49 50 51 52 53 54 55 56 57 58  

32 41 59 60 61 62 3 39 48 63 64 65 66 67 68 32 69  

48 70 71 72 39 73 74 75 76 77 78 79  

36 38 39 41 48 79 80 81  

82 83 84 41 85 86 87 88  

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101  

36 38 39 48 89  

39 41 102 103 104 105 106 107 108 

 
 
 
 
 
 
 
 
 



International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014 

 

2244 

ISSN: 2278 – 7798                                        All Rights Reserved © 2014 IJSETR                  

 

 
 

Improved Algorithm performance with Minimum Support 

 

V. CONCLUSIONS 

In this paper, presented a new map-reduce based 

algorithm addressing problem of mining frequent itemsets 

using dynamic workload management through a block-based 

partitioning. The block-based approach deals with memory 

constraints since the basic task of generating combinations 

may need very large memory space depending on several 

parameters including the support threshold. Our approach 

also exploits fundamental property of the itemsets generation 

task that shows that the arbiter communication steps, in 

exemplary implementations such as the FIM approach, are 

performance constraining. Literally, global pruning 

strategies bring off enough valuable information in 

comparison to the generated synchronization and I/O 

overheads. The features of proposed algorithm are it uses a 

properly tuned estimation to measure the correct itemset 

during the pass. It incorporates management of buffer and 

ensures completeness. The redundancy is eliminated by 

handling duplicates carefully and the workload management. 

It shows that the proposed algorithm achieves very pleasing 

performance and high scalability compared to a classical 

Apriori-based implementation. 
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