
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2239

Abstract— Frequent Itemset Mining is one of the exemplary

data mining constraint in most of the data mining applications.

It requires unmitigatedly extensive computations and I/O

traffic capacity. In this paper we attempt to represent one

such distributed algorithm which will run on Hadoop – one of

the latest most significant distributed frameworks which

support mapreduce paradigm. The proposed approach takes

into account quintessential characteristics of the Apriori

algorithm related to the frequent itemset generation and

through a block-based partitioning uses a dynamic workload

management. First, we represent a innovative algorithm

for determination of extensive itemsets which uses single

pass over the data than classical algorithm. Second, we

evaluate the idea of item combination which can

contribute to the debased adroitness of the algorithm and

enables to abbreviate database size at earlier stage

thereby reducing computational cost for later processing.
The algorithm substantially enhances the performance and

achieves high scalability compared to the existing distributed

Apriori based approaches. Proposed algorithm is implemented

and tested on large scale datasets distributed over a cluster.

Index Terms— Apriori Algorithm, Frequent Itemset

Mining, Hadoop, Map Reduce, Distributed Computing.

I. INTRODUCTION

Data mining is the effective process of discovering

patterns which are previously unknown and hidden in large

datasets. Current developments and advances in many

growing areas of engineering, science, business, etc. are

producing tremendous amount of data day by day resulting in

heavy requirement of storage. The efficiency to process,

analyze, and understand these datasets is at the need of

several disciplines, including parallel and distributed

computing. This is due to their inherent distributed nature,

the quality of their content, the size of the datasets and the

heterogeneity etc. One of the most important areas of data

mining is association rule mining; it is a task is to find all

items or subsets of items which frequently occur and the

relationship between them. This is achieved in two main

steps: finding frequent itemsets and generating association

rules. Frequent Itemset Mining (FIM) tries to discover

information from database based on frequent occurrences of

Manuscript received Aug, 2014.

Ms Dhamdhere Jyoti L., Department of Computer Engineering, SP’s

IOK-COE, University of Pune, Pune, India,+919881133338.

Prof. Deshpande Kiran B., Department of Computer Engineering, SP’s

IOK-COE, University of Pune, Pune, India.

an event according to the minimum frequency threshold

provided by user.

Due to limitations of main memory, FIM becomes

inefficient on large databases. This problem can be solved by

using Apriori algorithm [1][8][13], where database is

scanned multiple times for frequency count of each size of

candidate itemsets. Unluckily, single machines are unable to

fulfill the memory requirements for handling the complete

set of candidate itemsets. Also existing algorithms care to

control the output and runtime by increasing the minimum

frequency threshold, automatically reducing the number of

candidate and frequent itemsets [9].

Parallel programming is getting utmost importance to

deal with the massive amounts of data, which is produced

and consumed every day. Parallel programming

architectures and supporting algorithms, can be grouped into

two main categories viz. shared memory and distributed

(share nothing). On shared memory systems, all processing

units can concurrently access a shared memory area. While,

distributed systems are composed of processors that have

their own internal memories and communicate with each

other by passing messages [9]. It is easier to port algorithms

to shared memory parallelism, but they are typically not

scalable enough [5][6]. Distributed systems, allow quasi

linear scalability for well adapted programs. However, it is

not always easy to write or even adapt the programs for

distributed systems.

Current algorithms like Apriori are good for the

databases that are small in size, but if these algorithms are

executed on very large databases in parallel on distributed

systems the performance can be improved significantly.

Hadoop is an open source distributed framework which is

designed based on the Google’s Map-reduce programming

model [32][33]. Hadoop is capable of analyzing large amount

of data. Hadoop is developed by keeping most of the things in

mind like-large dataset, write once read many access models,

moving computation is cheaper than moving data etc.

Apache Hadoop wins terabyte sort benchmark in July 2008.

All this capability makes Hadoop suitable for most mining

problems. Hadoop has its own file system called Hadoop

Distributed File system (HDFS) which is capable of running

on commodity hardware with high fault tolerance ability.

Data replication is one of the important features of HDFS,

which ensures data availability and automatic re-execution

on multiple node failure. In this paper we have proposed

algorithm which will use the power of Hadoop for mining the

frequent Itemset.

This paper is organized as follows: Section II is for

background and literature survey, Section III describes the

An Effective Algorithm for Frequent Itemset

Mining on Hadoop

Ms. Dhamdhere Jyoti L., Prof. Deshpande Kiran B.

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

2240

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

Problem Statement and application of Hadoop to solve this

problem and implementation details of the proposed system

whereas section IV has proposed algorithm and analytical

discussion. Section V describes about data set used and

finally Section VI concludes this paper.

I. BACKGROUND

Frequent itemsets is considered to be very important in

many data mining tasks that try to discover interesting

patterns from databases, such as correlations, association

rules, episodes, sequences, clusters, classifiers and many

more where association rule mining is the most popular

problem [7][8]. The original stimulation of interest for

searching association rules came from the need of detail

examination of so called supermarket transaction data, i.e. to

study customer behavior in terms of the purchased products.

Association rules tells how frequently the items are

purchased together. For example, an association rule (bread)

-> (eggs) (80%) states that four out of five customers that

bought bread also bought eggs. Such rules can be matter of

importance for decisions about store layout, product pricing,

promotions and many others.

With the introduction of algorithm by Agrawal et al.

since 1993[1][2], the problem of mining the frequent itemset

and association rule are considered to be of utmost

important[9][11]. Within the past decade, numerous

research papers have been published presenting novel

algorithms or improvements on existing algorithms to solve

these mining problems more efficiently[3][4][6].

Many variants and improvements of this algorithm have

been developed suitable in parallel and distributed systems,

such as CD [1][7], FDM [21]. Some distributed approaches

are based on different sequential algorithms, such as the

FP-Growth algorithm[2][18], the D Sampling algorithm,

which is combination of the Sampling algorithm and the

DDM approach [31].

A. The Apriori Algorithm

AIS algorithm by Agrawal et al. was the first algorithm

which generates all frequent itemsets and confident

association rules with introduction of this mining problem

[1]. Agrawal et al. improved the same algorithm and

renamed it as Apriori which makes use of monotonicity

property of the support of itemsets and the confidence of

association rules [2][7].

Apriori algorithm is a classic algorithm for finding

frequent itemsets which is mainly based on level wise search

and iteratively discover frequent itemsets with size from 1 to

k-itemset.

Basic idea is to minimize the search space by using the

Apriori principle:

 An itemset must be frequent if and only if all of its

subsets are frequent.

 That is, if {AB} is a frequent itemset, then both {A}

and {B} should be frequent.

If there are n 1-itemsets that satisfy your minimum support,

Apriori and many other algorithms must consider

n*(n-1)/2 2-itemsets. This of course gets rather

expensive. In Apriori, the 2-itemsets often is the largest and

most expensive step and 3-itemsets may be worse.

B. A Frequent-Pattern Tree Approach

Mining frequent patterns in time-series databases,

transaction databases, and various kinds of databases has

been studied and analyzed popularly in data mining research.

Moreover, candidate set generation is still very expensive,

especially when we deal with large number of patterns and /

or long patterns [2]. J. Han, J. Pei, and Y. Yin had proposed

a novel frequent-pattern tree (FP-tree) structure [18]. This is

an extended prefix-tree structure used for storing compressed

and crucial information about frequent patterns. It uses an

efficient FP-growth mining approach which is FP tree based,

focusing on the concept of pattern fragment growth for the

complete set of frequent patterns.

The main advantage of FP-growth is that each linked list,

starting from an item in the header table representing the

cover of that item, is stored in a compressed form [7].

Unfortunately, to accomplish this gain, it needs to maintain a

complex data structure and perform a lot of dereferencing

and also the FP-tree representation is often much larger.

C. Sampling

The sampling algorithm, proposed by Toivonen [30],

performs at most two scans through the database by picking

a random sample from the database, then finding all

relatively frequent patterns in that sample, and then

verifying the results with the rest of the database. In the cases

where the sampling method does not produce all frequent

patterns, the missing patterns can be found by generating all

remaining potentially frequent patterns and verifying their

supports during a second pass through the database. By

decreasing the support threshold, the probability of such a

failure can be avoided. However, for a reasonably small

probability of failure, the threshold must be drastically

decreased, which can cause a combinatorial explosion of the

number of candidate patterns.

D. Partitioning

The Partition algorithm, proposed by Savasere et al. uses

an approach which is completely different from all previous

approaches [20]. Database is stored in main memory using

the vertical database layout and the support of an itemset is

computed by intersecting the covers of two of its subsets.

More specifically, for every frequent item, the algorithm

stores its cover. To compute the support of a candidate

k-itemset I, which is generated by joining two of its subsets

X, Y as in the Apriori algorithm, it intersects the covers of X

and Y , resulting in the cover of I.

Of course, storing the covers of all items actually means

that the complete database is read into main memory. For

large databases, this could be impossible. Therefore, the

Partition algorithm uses the following trick. The database is

partitioned into several disjoint parts and the algorithm

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2241

generates for every part all itemsets that are relatively

frequent within that part, using the algorithm described in

the previous paragraph and shown in Algorithm 4[20]. The

parts of the database are chosen in such a way that each part

fits into main memory on itself.

The algorithm merges all relatively frequent itemsets of

every part together. This results in a superset of all frequent

itemsets over the complete database, since an itemset that is

frequent in the complete database must be relatively frequent

in one of the parts. Then, the actual supports of all itemsets

are computed during a second scan through the database.

Again, every part is read into main memory using the vertical

database layout and the support of every itemset is computed

by intersecting the covers of all items occurring in that

itemset.

II. APPROACH DESCRIPTION

This section defines the problem definition, proposed

algorithm, system and implementation and gives an

analytical discussion that describes the proposed approach.

A. Problem Definition

The mathematical presentation of the basic concept of

support count in apriori algorithm presented in [1]. Let I = {i1,

i2, i3,…..,im} be the set of items. Let T = {t1, t2, t3,….,tn} be

the set of transactions, where each transaction t is a set of

items such that t I. The item X has support s in the

transaction set T is s% of transactions contain X denoted as

s = support(X). An association rule can be defined as AB,

where {A, B} I and A B =. The support of rule AB is

support (A B). The problem of mining association rule is to

find all the rules that satisfy a user specified minimum

support threshold. The itemset X is said to be frequent if its

support is greater than or equal to the user defined minimum

support threshold and also all of its subsets are also frequent.

Block abstraction policy is very beneficial for a

distributed file system. First, for large datasets, it is not

required that the blocks from a dataset to be stored on the

same disk, so they can take advantage of any of the disks in

the cluster. In fact, it would be possible to store a single file

on an HDFS cluster whose blocks filled all the disks in the

cluster [32][33]. Second, for more simplified subsystem a

block can be considered as a unit of abstraction instead of a

file. The storage management is also simplified since blocks

are of fixed size, thus eliminates metadata concerns. Also, for

providing fault tolerance and availability, blocks fit well with

replication.

Here we consider the block partitioning for the

distribution of the datasets among all processing nodes. The

dataset W is divided among M nodes with D transactions as

{T1, T2, . . . , TM}. Here every block constitutes transactions

that are assigned to the nodes. Let’s assume size of the

partition Ti as Di. Now each partition Ti is divided into bi

blocks {t1,t2,…,tbi }. The size of a block ti is defined as a

default value of 64MB or according to the available memory

in the processing node Ni and number of items, the average

transaction width, and also the support threshold of a dataset.

For a given minimum support threshold delta, an itemset x is

globally frequent if it is frequent in W; its support x.support

is greater than delta × D, and is locally frequent in a node Ni

if it is frequent in Ti; its support x.support is greater than

delta × Di.

B. Proposed System

As Hadoop requires data in the form of key-value pairs as

input and output, it need to first arrange the transactional

data into a suitable format where key is the transaction ID or

offset of every line and values will be the comma separated

list of items in that transaction. A simple two phase and

loosely coupled architecture can be used to implement large

range of data mining problem. Also for each phase in

Map-Reduce, the data should be in the form of key and value

pairs so we need to decide on the intermediate key value

structure. These intermediate key value pairs are passed to

the reduce phase at the end of the map phase to extract the

frequency count of itemsets.

Primarily, the algorithm consists of two phases. The first

phase consists of the combination generation which can be

seen as main-steps. Each main-step consists of a calculation

on the local dataset blocks, or a received block in the

formation of nCk combinations, and the potential

communication exchanges for the workload and requests

management. The second phase consists of a

synchronization which is carried out at the end of the first

phase for final results aggregation. In the beginning of the

first phase, each node Ni is assigned a block of its dataset

portion Di, its number of blocks bi, and a workload vector

Vi. This information is used to determine a remote

performance time when another processing node transfers a

job request to some other node.

Fig. 1: Map-Reduce Dataflow

C. System Layout

As per previous discussion, number of items in the

dataset and the support threshold affects the computation

complexity of the Apriori generation. It is clear that the

combinations of candidate sets can exponentially grow in the

Apriori generation process resulting in high demand in

memory space. This gives rise either to a thrashing effect,

which can remarkably degrade the performance, or unable to

deal with the dataset if the implementation is not adapted to

out of core computations. Each node performs then the nCk

combination generation in its blocks independently of the

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

2242

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

others. If a given node finishes its blocks processing, it

selects a processor that has not issued its end notification yet.

This policy achieves workload balance and fast execution

time.

Fig 2: Proposed system layout

The proposed algorithm is based on Hadoop Map-Reduce

programming. The database is organized in such a format

that each line contains information for a particular

transaction. In the proposed system is using

TextInputFormat as Input format so each mapper will get

each transaction as input. On receiving items in transaction

the map phase will create combination of all items in

that transaction to reduce the database scan. For each such

combination generated in map phase will emit the key as

item combination and value as TransactionId.

The output of all map phase will be given to the shuffling

and sorting phase. To compare the item pair combination, we

have written a customized comparator. Each reducer will get

key as item pair and value as list of all transactions in which

that item pair occur. For each such key value pair the reducer

will calculate the sum of all transaction in which that item

pair occur and compare it with minimal support and emit the

output item pair as key and value as null. In this way we get

frequent item pairs with less database scan but it will increase

the number of in-memory computation to generate

combination. Following algorithm illustrates the mapper and

reducer used for Apriori Algorithm.

III. PROPOSED ALGORITHM

The proposed algorithm is a basic distributed

implementation of the Apriori algorithm and it is easy to

adapt to map reduce. Algorithm 1 and 2 shows the pseudo

codes of the appropriate mapper and reducer. Figure 3 gives

the overview of the communication of the algorithm.

 Input:-

D-Dataset containing different transactions with

itemsets

S- Minimal Support

 Algorithm 1:- Mapper of the proposed algorithm

Map<Transaction_id, Itemset>

{

//Split itemset based on space

String items [] =itemset.split (“ ”)

for (int k: items.length)

 {

//Generate nCk combinations to reduce database

//scan

item_combinations=generateCombinations(n,k)

}

for(item_combination:item_combinations)

{

//For each combination emits combination as key

//and txn_id as value

 emit(item_combination,txn_id)

}

}

In Map function of the proposed algorithm every row of

the given dataset is treated as single transaction and is

assigned a unique transaction ID as txnid. The itemsets in a

transaction are split based on space. If any transaction has

more than 9 items then that particular transaction is further

split into sub transaction with subtxnid to speed up the

process. Next step is to form all possible combinations for

every transaction. Formation of nCk combinations reduces

the database scans. Every combination is checked for

symmetric property to avoid duplicate keys. The output of

mapper is in the form of key value pair and is provide as input

o the reducer.

 Algorithm 2:- Reducer of the proposed algorithm

Reduce<item_combination,Iterable<txnids>

{

int count=0;

//Count the occurrence of each txnid in which

//item_combination occurs

For(txnid:txnids)

{

 count++;

}

If(count>=minimum_support)

{

//if count>=minimum_support emit

//item_combination as key, and Value will be null

Emit(item_combination,NullWritable);

}

}

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2243

Input to the reducer is key value pair where key is itemset

{2,3} and value is in the form of <1,1,1> i.e. number of

occurrences of that itemset. The reducer simply adds the

values from key value pair and check for whether it satisfies

the minimum support. If yes then that particular itemset is

considered frequent and written in output file.

A. Analytical Discussion

Considering the basic Apriori implementation without

workload management:

Cost = bi pi

This is actual cost of the first phase. Thus pi can be

calculated as summation of generation of candidate set of

Aprori:

Pi =

According to the experimentation, pi,j will be similar in this

implementation as the candidate sets are very close in both

cases. So the generation cost for the first phase is:

CostFIM = bi

where ci,j is the frequent itemsets, and (m-1) ci,j is the

communication cost. In this approach one step of

communications is directly proportional to the iteration. Here

synchronization is implicit in each communication step.

Now consider the case using the workload management, and

the additional parameter bci which is nothing but the

communication cost of a local block at a given site Ni. The

maximum cost of the first phase of our approach is given by:

Costmax = (arg maxiЄNi bwi pi) + bci + pj

where bwi is the number of blocks at the site Ni, and pj is

remote computation cost on the site Nj.

Lemma.

 CPmax Є [CFIM -]

Proof – when all the blocks are executed locally at a given

site in the worst case. This means that CPmax is smaller or

equal to argmaxi Є Ni bipi[27]. Consider the global

candidates set GCi,j obtained using global pruning

strategies, and the set LCi,j, the local candidates set obtained

only by local pruning. Considering wide range of conditions

and datasets, the set GCi,j is very close to the set LCi,j, for i =

1, ..,M and j = 1, .., k. This means that the sum Pi =

is quite similar in both cases. Accordingly considering the

same conditions, CFIM − bipi = CFIM – bi Pi = is

bounded by bi . Therefore, in the

case of a single communication step, the difference CPmax −

CFIM can reach .

It is clear from the test that communication steps

costs and synchronization are very important . Further, in the

case of data distribution for large datasets, dynamic workload

management works very efficiently. The additional

communications in forming combination are overlapped by

local computations. In this approach, the adopted policy for

dynamic job requests and data movement, tends to the

additional communication overheads of forming

combinations on blocks and are overlapped with the

computations.

IV. DATASET

The experiment is done using two real data sets which are

publicly available and have different characteristics. One of

which is generated by IBM synthetic data generator [1][7]

and other is the basket data set, contains transactions from a

retail store. Table I shows the number of items and the

number of transactions in each data set, and the minimum,

maximum and average length of the transactions.

Additionally, Table II shows for each data set the lowest

minimal support threshold that was used in experiments, the

number of frequent items and itemsets, and the size of the

longest frequent itemset that was found.

A. Data Set Characteristics

Table I. Number of Items & Transactions in each Data Set

Data Set Σ |F1| |F| Max { k | |Fk| > 0 }

T20I7D500K 700 804 550126 18

Retail Market

Basket

7 8051 285758 11

Table II. Lowest Min Threshold for each Data Set

Data Set #Items #Transactions Mn|T| Max|T| Avg|T|

T20I7D500

K

942 90000 4 77 39

Retail Market

Basket

16470 88163 1 51 13

The input which is expected to be given to the proposed

model is as follows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

38 39 47 48 38 39 48 49 50 51 52 53 54 55 56 57 58

32 41 59 60 61 62 3 39 48 63 64 65 66 67 68 32 69

48 70 71 72 39 73 74 75 76 77 78 79

36 38 39 41 48 79 80 81

82 83 84 41 85 86 87 88

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101

36 38 39 48 89

39 41 102 103 104 105 106 107 108

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

2244

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR

Improved Algorithm performance with Minimum Support

V. CONCLUSIONS

In this paper, presented a new map-reduce based

algorithm addressing problem of mining frequent itemsets

using dynamic workload management through a block-based

partitioning. The block-based approach deals with memory

constraints since the basic task of generating combinations

may need very large memory space depending on several

parameters including the support threshold. Our approach

also exploits fundamental property of the itemsets generation

task that shows that the arbiter communication steps, in

exemplary implementations such as the FIM approach, are

performance constraining. Literally, global pruning

strategies bring off enough valuable information in

comparison to the generated synchronization and I/O

overheads. The features of proposed algorithm are it uses a

properly tuned estimation to measure the correct itemset

during the pass. It incorporates management of buffer and

ensures completeness. The redundancy is eliminated by

handling duplicates carefully and the workload management.

It shows that the proposed algorithm achieves very pleasing

performance and high scalability compared to a classical

Apriori-based implementation.

ACKNOWLEDGMENT

Authors sincerely thank the all anonymous researchers for

constructive suggestions. Authors would also thank the

college authorities for providing the required infrastructure

and support. First author is very thankful to Prof. Kiran B.

Deshpande for his guidance.

References

[1] Ferenc Kovacs and Janos Illes Frequent Itemset Mining on Hadoop,

ICCC 2013 IEEE 9th International conference on Computational

Cybrnetics, Tihany, Hungary, July 8-0, 2013.

[2] J. Han, J. Pei, and Y. yin. Mining Frequent Pattern Without Candidate

Generation. A frequent-Pattern Tree Approach. Data Mining and

Knowledge Discovery, 2003

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

In J.B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings 20th Inter-

national Conference on Very Large Data Bases, pages 487–499. Morgan

Kaufmann, 1994.

[4] R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules

between sets of items in large databases. In P. Buneman and S. Jajodia,

editors, Proceedings of the 1993 ACM SIGMOD International Confer-

ence on Management of Data, volume 22(2) of SIGMOD Record, pages

207–216. ACM Press, 1993

[5] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. A tree projection

algorithm for generation of frequent itemsets. Journal of Parallel and

Distributed Computing, 61(3):350–371, March 2001.

[6] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo.

Fast discovery of association rules. In U.M. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge

Discovery and Data Mining, pages 307–328. MIT Press, 1996

[7] Bart Goethals. Survey on Frequent Pattern Mining, HIIT Basic Research

Unit Department of Computer Science University of Helsinki P.O. box

26, FIN-00014 Helsinki Finlan.

[8] Lin, Ming-Yen and Lee, Pei-Yu and Hsueh, Sue-Chen Apriori-based

frequent itemset mining algorithm on Mapreduce, ICUIMC’12

Proceeding of the 6
th
 International Conference on Ubiquitous Information

Management and Communication, 2012.

[9] Sandy Moens, Emin Aksehirli and Bart Goethals, Frequent Itemset

Mining for Big Data, Universiteit Antwerpen, Belgium.

[10] R. Agrawal and R. Srikant. Quest Synthetic Data Generator. IBM

Almaden Research Center, San Jose, California. 38

[11] R.J. Bayardo, Jr. Efficiently mining long patterns from databases. In L.M.

Haas and A. Tiwary, editors, Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data, volume 27(2) of

SIGMOD Record, pages 85–93. ACM Press, 1998.

[12] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases.

University of California, Irvine, Dept. of Information and Computer

Sciences, 1998.

[13] C. Borgelt and R. Kruse. Induction of association rules: Apriori

implementation. In W. H¨ardle and B. R¨onz, editors, Proceedings of the

15th Conference on Computational Statistics, pages 395–400, 2002.

[14] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A condensed

representation of boolean data for the approximation of frequency queries.

Data Mining and Knowledge Discovery, 2003. To appear.

[15] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting

and implication rules for market basket data. In Proceedings of the 1997

ACM SIGMOD International Conference on Management of Data,

volume 26(2) of SIGMOD Record, pages 255–264. ACM Press, 1997.

[16] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In

T. Elomaa, H. Mannila, and H. Toivonen, editors, Proceedings of the 39

6th European Conference on Principles of Data Mining and Knowledge

Discovery, volume 2431 of Lecture Notes in Computer Science, pages

74–85. Springer, 2002.

[17] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In Chen et al., pages 1–12.

[18] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data Mining and

Knowledge Discovery, 2003.

[19] J. Hipp, U. G¨untzer, and G. Nakhaeizadeh. Mining association rules:

Deriving a superior algorithm by analyzing today’s approaches. In D.A.

Zighed, H.J. Komorowski, and J.M. Zytkow, editors, Proceedings of the

4th European Conference on Principles of Data Mining and Knowledge

Discovery, volume 1910 of Lecture Notes in Computer Science, pages

159–168. Springer, 2000.

[20] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDDCup

2000 organizers’ report: Peeling the onion. SIGKDD Explorations,

2(2):86–98, 2000. http://www.ecn.purdue.edu/KDDCUP.

[21] CHEUNG, D. W., HAN, J., NG, V. T., FU, A. W., AND FU, Y. 1996. A

fast distributed algorithm for mining association rules. In PDIS:

nternational Conference on Parallel and Distributed Information Systems.

IEEE Computer Society Technical Committee on Data Engineering, and

ACM SIGMOD.

[22] H. Mannila and H. Toivonen. Levelwise search and borders of theories in

knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–

258, November 1997.

[23] H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for

discovering association rules. In U.M. Fayyad and R. Uthurusamy,

editors, Proceedings of the AAAI Workshop on Knowledge Discovery in

Databases, pages 181–192. AAAI Press, 1994.

[24] S. Orlando, P. Palmerini, and R. Perego. Enhancing the apriori algorithm

for frequent set counting. In Y. Kambayashi, W. Winiwarter, and M.

Arikawa, editors, Proceedings of the Third International Conference on

Data Warehousing and Knowledge Discovery, volume 2114 of Lecture

Notes in Computer Science, pages 71–82. Springer, 2001.

[25] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and

resource-aware mining of frequent sets. In V. Kumar, S. Tsumoto, P.S.

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 8, August 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2245

Yu, and N.Zhong, editors, Proceedings of the 2002 IEEE International

Conference on Data Mining. IEEE Computer Society, 2002. To appear.

[26] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for

mining association rules in large databases. In Dayal et al., pages

432–444.

[27] Lamine M. Aouad, Nhien-An Le-Khac and Tahar M. Kechadi,

Distributed Frequent Itemsets Mining in Heterogeneous Platforms,

Journal of ngineering Computing and Architecture, Volume 1, Issue 2,

2007

[28] P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness

measure for association patterns. In D. Hand, D. Keim, and R.T. Ng,

editors, Proceedings of the Eight ACMSIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 32–41. ACM Press,

2002.

[29] M.J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed

itemset mining. In R. Grossman, J. Han, V. Kumar, H. Mannila, and R.

Motwani, editors, Proceedings of the Second SIAM International

Conference on Data Mining, 2002. 42

[30] M.J. Zaki. Scalable algorithms for association mining. IEEE Transactions

on Knowledge and Data Engineering, 12(3):372–390, May/June 2000.

[31] H. Toivonen. Sampling large databases for association rules. In T.M.

Vijayaraman, A.P. Buchmann, C. Mohan, and N.L. Sarda, editors,

Proceedings 22nd International Conference on Very Large Data Bases,

pages 134–145. Morgan Kaufmann, 1996.

[32] http://hadoop.apache.org

[33] http://www.apache.org

