
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 10, October 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2549

Design and implementation of high speed fault injection
process for testing FPGA based designs
1Reasearch Scholar, DEPT OF ECE, VIFCET, Gandipet, Telangana, Hyderabad, India.

2Ass Prof & HOD, Dept of ECE, VIFCET, Hyderabad, India.
3Application engineer at Uni String Tech Solutions Pvt Ltd, Hyderabad, India.

Abstract— In current VLSI technology fault injection
process has become a popular technique for practically
verifying the fault tolerant based designs. There are
fundamentally two types of fault injection methods; they are
hardware-based fault injection and software-based fault
injection. Both have their own limitations and advantages.
The FPGA synthesizable fault injection model can give
reasonable solution with high speed testing platform and also
allows good controllability and observability. Even though a
considerable progress has been made in research part of the
fault injection algorithms, there is a little progress done in
developing a tool for FPGA based fault emulation. In this
paper an FPGA-based fault injection tool (FITO) that
supports several synthesizable fault models of digital systems
are implemented using VHDL. The main Aim is to build real
time fault injection mechanism with good controllability and
observability. Fault injection will be done by applying some
extra gates and wires to the original design description and
modifying the target VHDL model of the target system. The
design will be validated with state machine based example
and applying different types of faults. Analysis will be
carried out studying the controllability and observability
of the proposed scheme. Comparison will be carried out
to estimate the speed wise improvement with respect to
software simulation based fault injection method.

Key words: VLSI, FITO, VHDL, fault modeling
Tools & H/W used: Isim, Xilinx, FPGA.

I. INTRODUCTION

The fault injection is a technique of Fault Tolerant Systems
(FTSs) validation which is being increasingly consolidated and
applied in a wide range of fields, and several automatic tools
have been designed. The fault injection technique is defined as
Fault injection is the validation technique of the Dependability of
Fault Tolerant Systems which consists in the accomplishment of
controlled experiments where the observation of the system’s
behavior in presence of faults is induced explicitly by the
voluntary introduction (injection) of faults to the system. The
fault injection in the hardware of a system can be implemented
within three main techniques:

1. Physical fault injection: It is accomplished at physical level,
disturbing the hardware with parameters of the environment (heavy
ions radiation, electromagnetic interference, etc.) or modifying the
value of the pins of the integrated circuits.

2. Software Implemented Fault injection (SWIFI): The objective of
this technique, also called Fault Emulation, consists of reproducing
at information level the errors that would have been produced upon
occurring faults in the hardware. It is based on different practical
types of injection, such as the modification of the memory data, or
the mutation of the application software or the lowest service
layers (at operating system level, for example).

3. Simulated fault injection: In this technique, the system under test
is simulated in other computer system. The faults are induced
altering the logical values during the simulation. This work is
framed in the simulated fault injection, and concretely in the
simulation of models based on the VHDL hardware description
language. We have chosen this technique due fundamentally to
The growing interest of the simulated injection techniques as a
complement of the physical fault injection (these have been
traditionally more numerous and developed) and Fault
Emulation(SWIFI) experiments. The greatest advantage of this
method over the previous ones is the Observability and
Controllability of all the modeled components. The simulation can
be accomplished in different abstraction levels. Another positive
aspect of this technique is the possibility of carrying out the
validation of the system during the design phase, before having the
final product.

4· The good perspectives of modeling systems and faults with
VHDL, that has been consolidated as a powerful standard to
analyze and design computer systems. This work follows the one
carried out in the paper, where the study of the error syndrome of a
simple microcomputer was presented, errors were classified and
latencies were measured. To do that, we performed an injection
campaign by means of a fault injection tool deployed for such a
purpose. In present work, we intend to perform the validation of a
fault tolerant system .The VHDL model of the micro computer
used in the previous paper has been enhanced and we have added
mechanisms for the detection and recovery of errors. Using our
own fault injection tool, we have performed an injection campaign
on the system and we have calculated the coverage and latencies
on the detection and recovery of the produced errors.



International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 10, October 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2550

A. FAULT INJECTION METHODS
The fault injection methods are classified in below fig.1.

Fig.1. Types of fault injection methods
B. FITO

FITO environment consists of three parts
(1) Source code modifier and fault list generator.
(2) Fault injection manager
(3) Results capturing with FPGA emulation

C. Source Code Modifier and Fault List Generator

Source code modifier and fault list generator are the software
parts of the FITO. This is implemented with two tools.

 Eclipse editor
 C programs to insert faults on a specific port.
These are located on host (PC) computer. Separate C

scripts are developed for inserting each fault. A GUI facilitates
invoking the scripts by mouse right click.

D. FAULT INJECTION MANAGER
Fault injection manger is responsible for performing the real time
fault injection. The fault injection manager is implemented in
VHDL. The fault injection manager consists of

VHDL package (dynamically updated by C programs)
Fault scheduler
Fault insertion components

The VHDL package is implemented to capture all the constants,
type definitions, component declarations and fault injection time
for each fault. The package also consists of number of total faults.
This VHDL file is automatically updated by C programs every
time when a fault is injected in code. The fault scheduler runs
multiple counters to schedule each fault with required fault
activation time and fault propagation time as per the package.
The fault scheduler produces output fault number which is
currently being active. This module generates the parallel fault
injection signals for every fault. These signals are routed to all
fault sites. Fault insertion components are gates with FIS (fault
injection signal) control to inject the faults when the FIS is active
high. These components instances are automatically made when
ever faults are injected.

II. PROPOSED FAULT TOLERANT PROCESSOR
ARCHITECTURE

Fig.2. Block Diagram of fault tolerant processor
The proposed architecture is double ALU based fault tolerant
for handling soft errors. The Fig. 2. describes the detailed
architecture of fault tolerant processor.
Definition - Fault-tolerant describes a computer system or
component designed so that, in the event that a component fails,
a backup component or procedure can Immediately take its place
with no loss of service. Fault tolerance can be provided with
software, or embedded in hardware, or provided by some
combination.

A. HARDWARE BASED FAULT INJECTION
FITO supports several synthesizable fault models for dependability
analysis of digital systems. They can be categorized into 3 types.

 Permanent faults
 Transition faults
 Single event upset faults (or) Bit-flip

Fault injection process can be done by applying some extra gates
and wires to the original design description and modifying the
target verilog model of the system. One of these extra wires is the
Fault injection system (FIS) which playing the key role in the fault
injection experiments. If a FIS takes the value 1, fault would be
activated and if it takes the value 0, the fault would become
inactive. For example in the case of Stuck-at-0 fault when the FIS
is made 1 then the signal is forced to zero, implementing the fault
condition. The below section gives the detailed discussion about
injecting the permanent faults. For supporting the permanent faults
in verilog design, FITO nominates wires for fault injection and
apply the FIS signal with one extra gate,. So by selecting the FIS
signal high at fault injection time, the permanent fault into the
specified wire will be injected.
For example if the signal name in the original code is X then the
modified signal TX will be generated as below. In all the places in
the code instead of X, the TX will be replaced. Struck at faults
models are given in below fig.3 and fig.4.



International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 10, October 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2551

A. Struck at faults

Fig.3. Synthesizable fault model for stuck-at-0

Similarly the following code shows the required extra gate and
control signal FIS for implementing the stuck-at-1 fault.

Fig.4. Synthesizable fault model for stuck-at-1

For each FIS there would be a path through all levels of
hierarchy to its modified circuit. After modification, the final
synthesizable verilog description will be produced which is
suitable to use in emulators. For example in the above example if
the mux is component in next high level module then the
component assignment of mux will be accordingly changed.

B. TRANSIENT FAULTS
The modified circuit that is suitable for transient fault injection is
shown in below fig.5.

Fig.5. Synthesizable transient fault model.

For injecting a transient fault, after reaching the fault injection
time, the FIS signal will be made high and the timer, which have
been loaded with the duration of the transient fault injection start
to count. Therefore, the FIS will be high (at logic 1) for the
specified duration of time. As similar to the permanent fault, the
additional wire (TX) will be used and each wire, namely X will
be replaced with TX. The fault injection manager is responsible
for managing the fault injection experiments, such as loading the
timers, setting the FIS for the predetermined time, introducing
additional wires and performing the fault injection.

C. BIT FLIP or SINGLE EVENT UPSET (SEU)

The fault model that is used by FITO at this level is bit-flip (or
single event upset). SEUs are the random events and may flip the
content of the memory element at unpredictable times. FITO

generate modified circuit for each memory element that is
specified for fault injection. The modified circuit for supporting bit
flip fault model is shown in below fig.6.

Fig.6. Synthesizable bit-flip model.

For supporting the bit-flip model, FITO produces the additional
signals such as Bit and FIS with one multiplexer. The Verilog
synthesizable code for supporting this fault model is shown in
above figure. The invertered input will go to the flip-flop for the
next clock when the FIS and bit are ‘1’. The fault injection
manager part of FITO is responsible for setting and resetting the
FIS and bit signals.

III. IMPLEMENTATION OF FITO MODULES.

The Implementation of the proposed approach is to predict the
effects of SEUs on FPGAs through an update version of an
analytical tool called FITO and validate it with a fault injection
campaign.

A. FITO - PACKAGE

The maximum number of faults are taken to be 63 and based
on that the other constants are defined. However there is no
limitation of the maximum number of faults that can be inserted.
Depending on the requirement one has to the constants values
in this package. Another constant is defined to give the number of
injected faults. This constant value is updated by C program
every time when a new fault is inserted. FIS_vec_type defines
a bus of size equal to number of faults. This bus goes through all
modules such that any module can use the control lines for
fault injection. It may appear that by routing 64 length wider bus
to all small and big modules of design under test we are consuming
high number of FPGA routing resources. But the synthesis
tool can optimize the resources by only routing the lines which
are used in this module. Constant by name Fault injection signal
(FIS) high duration indicates the number of clock cycles for which
fault will be injected in the design.

FIS duration constant tells the time allotted for each fault.
That is even after removing the fault we can wait for output
to capture before enabling the next fault. This will be useful in
cases where the fault propagation time is high. For every fault
these two constants are settable in the GUI. The constant
fault_type defines the type of fault as per the below table. For each
fault that is injected used will choose this option on GUI.



International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 10, October 2014

ISSN: 2278 – 7798 All Rights Reserved © 2014 IJSETR 2552

B. FITO DESIGN ARCHITECTURE
FITO environment consists of three parts

 Source code modifier and fault list generator.
 Fault injection manager
 Result analyzer.

Source code modifier & fault list generator and result analyzer
are the software parts of the FITO. These are located on host
computer. These are implemented with C programming language.
Fault injection manger is responsible for performing the real time
fault injection. This hardware part is implemented on the FPGA
board. Result analyzer performs the analysis of results which are
generated by the fault injection manager. The analysis shall
summarize the fault responses for each injected fault.

The following fig.7 shows the fault injection process with FITO.

Fig.7. fault injection process with FITO.

IV. FAULT INJECTION COMPONENTS

Fault injection components are gates with FIS (fault injection
signal) control to inject the faults when the FIS is active high.
These components instances are automatically made in the
selected module when ever faults are injected. The following
section gives the codes for fault injection components. Since all
these components are declared in package fault injection need
not add component declaration. Hence the fault insertion
becomes easy to implement only the following steps.

 Generate code to declare a signal of the same size of the
port on which fault need to be injected.

 Add the corresponding fault injection component
instance connecting the port signal, FIS control line and
output signal.

 Replace all the port signal instances with the declared
new signal.

The following section shows the VHDL code for all the fault
injection components. Since the VHDL coding syntax need to
change for single bit port and buses for each fault two versions
of components are created. One to inject fault on single port
signals and other to inject on to vectors. The Fault Injection Tool
(FITO) is developed with a GUI providing editor and dialog
boxes by which user can easily injects faults by few mouse

button clicks. Each button click calls a DOS executable program.
The DOS executable is built with C programming which modifies
the VHDL file as per the required fault injection. In this chapter
GUI and C program implementation details are presented. Below
table 1 and table2 are describes the synthesis report of the fito
process.

V. SYNTHESIS REPORT

TABLE I

Synthesis report before fault injection.

Name Used Available % used
SLICES 286 4656 6%
BONDED
IOB’S

35 232 15%

LUT’S 541 9312 5%

TABLE II
Synthesis report after fault injection

Name Used Available % used

SLICES 420 4656 9%

BONDED
IOB’S

35 232 15%

LUT’S 803 9312 8%

VI. GUI PROVIDING EDITOR AND DAILOG BOXES

The GUI is designed with Eclipse frame work has editor and fault
insertion menu options. The following fig.8 shows the screenshot
of the GUI.

Fig.8.GUI Editor for Inserting Faults.

VII. SIMULATION RESULTS




