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Abstract— Interaction of vortex rings with solid boundaries is 

an important research topic of hydrodynamic. In this study, a 

multiple-relaxation time (MRT) lattice Boltzmann method 

(LBM) is used to investigate the flow of a vortex ring impacting 

a sphere. The MRT-LBM is validated through the cases of 

vortex ring impacting a flat wall. The vortex evolution due to 

sphere size is discussed in detail. When the vortex ring 

impacting a stationary sphere, the interaction is described as 

the following three stages. Firstly, the secondary vortex is 

generated as the stretching of boundary vorticity at the 

beginning of impacting. In the second stage, the primary and 

secondary vortices expand and shrink radically and will wrap 

around each other. Finally, the primary vortex ring will recover 

from the ‘wheel hub’ structure. 

 
Index Terms— Lattice Boltzmann method, vortex ring, 

sphere.  

 

[1] INTRODUCTION 

    As one of the typical forms of vortex motion, vortex rings 

widely exist in nature and engineering. The interaction of 

vortex rings with solid or fluid boundaries is a fundamental 

problem in fluid dynamics and has received considerable 

attention. This subject is also associated with a variety of 

practical applications, such as vortex rings extinguishing gas 

and oil well fires [1], cavitated rings used for underwater 

drilling [2], and modeling the interaction between the 

downburst and the aircraft [3]. Moreover, the underlying 

flow phenomena and physical mechanisms are still unclear 

and are of great interest for detailed studies. 

    Vortex rings interacting with a flat wall has been 

extensively studied. These studies [4-9] showed that as the 

primary vortex ring moves gradually toward the wall, its rate 

of approach slows and its radius continues to increase; 

meanwhile, considerable secondary vorticity is generated on 

the surface. When the Reynolds number, based on the initial 

diameter and translational speed of the vortex ring, is larger 

than about 500, the secondary vorticity separates from the 

surface and interacts with the primary vortex ring resulting  

in the ring rebounding from the wall. Actually, these studies 

are mainly limited to relatively low Reynolds numbers, the 

highest Reynolds number in these studies is about 2840 [9]. 

The experimental study [9] has revealed that, beyond Re = 

3000 for the interaction between a vortex ring and a flat wall, 
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the primary vortex ring will no longer remain stable as it 

approaches the wall.  

    Comparing with the numerous studies of vortex rings 

impacting a wall, the work of the interaction between a vortex 

ring and a sphere is scarce. To the best of our knowledge, the 

following two works were carried out in the literature. One is 

the experimental study of a vortex ring impacting a moving 

sphere [10]. In the experiment, a neutrally buoyant sphere 

was free to move in response to the impulse delivered by a 

vortex ring in water. The other work is a numerical study of 

the vortex interaction with a stationary sphere [11] using the 

implicit fourth-order compact finite difference schemes for 

solving the flow with Re=2000. Sousa analyzed the vortex 

dynamics of the ring as it approached the sphere surface [11]. 

He identified that the boundary layer formed on the surface of 

the sphere undergoes separation to form a second vortex ring, 

which grow rapidly as it interact with the primary ring. 

However, most of the previous studies are restricted to a flat 

or a sphere. The physical mechanisms are still unclear and the 

effect of sphere’s size effect on the evolution of the vortices 

have never been addressed in the literature. 

 

[2] NUMERICAL METHOD AND THE COMPUTATIONAL MODEL 

[3] MRT-LBM 

    The simplest lattice Boltzmann method is the 

Bhatnagar-Gross-Krook (BGK) model, which is based on an 

approximation of a single relaxation time [12]. Until the 

1990s, the MRT lattice Boltzmann method was developed, 

which overcomes some obvious defects of the BGK model, 

such as fixed ratio between the kinematic and bulk viscosities, 

improved the numerical stability [13].  

    The reasons why we use the MRT-LBM are illustrated in 

the follows. First, the LBM method is easy to implement and 

parallelized for this incompressible flow. Second, compared 

to conventional Navier-Stokes solvers of equal order of 

accuracy, the LBM has relatively low numerical dissipation 

and dispersion. 

    There are only two main steps in the code: streaming and 

collision. In the streaming step, the Distribution Functions 

(DF) in different directions ( e.g., there are 19 components 

in the D3Q19 velocity model) at a computational node would 

propagate to its neighbourhood. The collision step is 

implemented locally. With the DF streaming from the 

neighbourhood, the macroscopic variables can be calculated 

as the moments of the DF. The DF can be updated through 

the collision step. In the collision step, the 

multiple-relax-time model is used to ensure a better 

numerical stability.  

    In our study, the fluid flow is solved by the MRT-LBM. 
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The following MRT lattice Boltzmann (LB) equation [13] is 

employed to solve the incompressible Navier-Stokes 

equations, 

( )1
( , ) ( , ) ( , ) ( , )

eq
f t t t f t M m t m t

i


       

 
  

x e x S x x (1) 

where the Dirac notation of ket  vectors symbolize the 

column vectors. The particle distribution function |f (x, t)⟩  

has 19 components fi with i = 0, 1, ..., 18 in our 3D 

simulations because the D3Q19 velocity model is used. ei are 

the discrete velocities of the velocity model. The directions of 

the velocities are shown in Fig. 1(a), and for example, e1 can 

be written as e1 = (1, 0, 0)c. Here c = Δx/Δt is the lattice 

speed, where Δx and Δt are the lattice spacing (1lu) and 

time step (1ts) in LB simulations, respectively. 

 

 

 
Fig. 1. (a) D3Q19 velocity model, e1 to e18 represent 18 non-zero components 

and e0 is a zero component and not labeled; (b) illustration of“interpolation 

bounce-back”. The black filled circles are solid nodes, which are inside the 

surface of the solid body. The other circles are fluid nodes and the blue filled 

circles denote the fluid nodes which have at least one link with solid nodes 

(any of the 18 directions). 

 

    The collision matrix S = M· S · M
− 1 is diagonal with S 

[13]， 

S≡ diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, 

s16, s16, s16) ·
eqm  is the equilibrium value of the moment 

m . The 19 × 19 matrix M is a linear transformation which 

is used to map a vector f  in discrete velocity space to a 

vector m  in moment space, i.e., m M f  , 

1f M m  . The matrix M, the discrete velocities of the 

D3Q19 model, and 
eqm  are all identical as those used by 

[13]. 

The macro-variables density  and momentum j are 

obtained from 

            
i i

= , ,i i ij f j f e                              (2) 

where  denotes x, y, or z coordinates. Here the collision 

process is executed in moment space [13]. In our simulations, 

the parameters are chosen as: s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, 

s9 = 1/τ , s13 = s9, and s16 = 1.98. The parameter τ is related 

to the kinematic viscosity of the fluid with 
2 ( 0.5)f sv c t   and cs = c/ 3 . The pressure in the flow 

field can be obtained from the density via the equation of 

state
2p sc  . 

    Macroscopically, (2) is able to recover the incompressible 

Navier-Stokes equation [13]. In the implementation to ensure 

the incompressibility condition, usually the velocity in the 

flow field should not exceed 0.1c. 

[4] Boundary conditions 

As we know, the non-slip boundary condition should be 

ensured in the particle ’ s surface. Here, the non-slip 

boundary condition in our study is based on the scheme of 

Lallemand [14]. In Fig. 1(b), the computational domain was 

separated by a solid surface. Some lattice nodes which inside 

the surface are solid nodes (filled black circles) and the 

collision steps are not implemented in these nodes. Outside 

the surface, there are fluid nodes, which are represented by 

the filled blue circles and black circles. The filled blue circle 

denote the fluid nodes which have at least one link of the 18 

directions (shown in Fig. 1(a)) connecting with the solid 

nodes. Usually the half-way bounce back is used to ensure the 

non-slip boundary condition. In Fig. 1(b), we can see that 

after streaming step, there are 6 directions are unknown for 

the lattice node b, i.e.,  f1(b), f3(b), f5(b), f7(b), f15(b), f11(b). 

For the half-way bounce back scheme (or simple bounce 

back), the unknown DF that comes from the solid node is set 

to be the DF in the reverse direction, which is already known. 

For example,  f1(b) = f2(b). 

Here a more accurate curve wall boundary condition [14] 

is applied. In the follows, an example about how to get  f7(b) 

is illustrated in detail and the other DFs can be obtained in the 

similar way. In Fig. 1(b), suppose the line ab intersects with 

the solid surface at point p. |bp| denotes the length of the 

green line bp.  After the streaming step, the unknown f7(b) 

can be obtained through a second-order interpolation from 

the surrounding points.  More details about the 

“interpolation bounce back” can be found in [14]. 

[5] Computational model 

In this work, the size of the computational domain was H × 

H × L in the x, y, and z-directions, respectively, where H = 

12r0 and L = 11r0. r0 is the initial radius of the ring and is used 

as a characteristic length. As illustrated in Fig.2, the vortex 

ring and the elliptical sphere are initially placed at a distance z 

= 9r0 and z0 = 7r0, respectively. The sphere is placed exactly 

under the vortex ring center and the line connecting the 

centers of the vortex ring and the particle is on the z− axis. 

 
Fig. 2. Computation model for a vortex ring approaching a sphere. 
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The initial vorticity distribution of the vortex ring is 

assigned by a Gaussian function, i.e., the initial velocity field 

u0 = (u, v,w)0 is specified as [4] 
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where Γ is the circulation of the ring, θ is the unit vector 

tangential to circulation circles of the vortex ring core, σ is 

the radial distance from the center of the core and the initial 

one is σ0 = αr0. The corresponding initial translational speed 

of the vortex ring wc is approximately [4] 

                               0
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    In the simulation, constant-pressure boundary condition is 

applied on the six faces of the computational domain. For the 

boundary condition, the density of the fluid is specified as 

unity and the velocity is extrapolated from the inner fluid 

nodes. Then the equilibrium distribution function in the 

boundary fluid node can be calculated. The non-equilibrium 

part of the distribution function is extrapolated from the inner 

fluid nodes. 

[6] VALIDATION OF THE NUMERICAL METHOD 

To validate our code, grid-independence study was 

performed first. The vortex ring impacting a flat wall is 

simulated. As we know, some previous studies [4-8] 

demonstrate that for intermediate Re (Re < 1000), as long as 

H and L ≥ 10r0, the effect due to finite domain is negligible. 

Here, H = 12r0 and L = 11r0 are adopted. In the 

grid-independence study, four different meshes are used. The 

mesh resolutions are r0 = 20lu, 25lu, 30lu, and 35lu, 

respectively. The corresponding domain sizes in the 

simulations are 240×240×220, 300×300×275, 360×360

×330, 420×420×385 respectively. In the simulations, the 

vortex ring is initially put 3r0 above the flat wall, α = 0.21 and 

Re = 830. 

 
Table 1. Peak value of the vorticity in the (y, z)-plane at dimensionless 

time T=10, 14, 18 for different meshes. 

T r0=20 r0=25 r0=30 r0=35 

10 4.531 4.670 4.712 4.733 

14 4.608 4.758 4.767 4.762 

18 5.185 5.243 5.253 5.256 

 

The peak values of vorticities in the (y, z)-plane at different 

times are compared and shown in Table 1. From Table 1, we 

can see that at the times listed, there are significant 

discrepancies between the case of r0 = 20lu and other cases 

(with maximum 3.2% discrepancy). On the other hand, the 

discrepancies between cases of r0=30lu and r0=35lu are much 

smaller (less than 0.3%) and negligible. The result shows that 

the grid with resolution r0=30lu is fine enough to carry out 

relevant numerical study. Hence, in the following study, the 

mesh resolution is set to be r0=30lu, i.e., the domain size is 

360×360×330. 

To further validate our code, the trajectory of the primary 

vortex ring core is compared with the experimental data for 

the case Re = 830. The location of the primary vortex ( y , z ) 

is calculated through 

          
1 1

= , = ,x x

A A

y y dydz z z dydz 
               (5) 

where A ∈  [0, H/2] × L in the (y, z)− plane. As shown in Fig. 

3, the LBM trajectory fits very well with the experiment data 

[8]. 

 
Fig. 3. The trajectory of the primary votex ring center for the case Re = 830. 

The line and squares denote our LBM result and the experimental data [8], 

respectively. 

 

The evolution of the vortex is also compared with the 

experimental data and shown in Fig. 4. We can see the when 

the primary vortex ring approaches the flat wall, the 

secondary vortex is generated from the wall and rolls up ((b) 

and (c) in the figure). With the expansion of the primary 

vortex, the secondary vortex rolls up to the top of the primary 

vortex ((d) and (e)). Even the tertiary vortex structures can be 

seen in the last row of the figure. 

     

 
    Fig. 4. The evolution of the vortex impacting a flat wall for Re = 830. The 

left and right columns are the experimental data [8] and our LBM result, 

respectively. 

[7] RESULTS AND DISCUSSION 

In this section, the vortex ring impacting a sphere with 

different sphere size is studied. We focus on the dynamics of 

the flow, e.g., the evolution of the vortices. In the simulation, 

α is set to be 0.45, which means the primary vortex ring is 

thick.  

Firstly, r = 4/15 r0 is investigated. Fig. 5 shows the 

evolution of the vortex ring for Re = 600. As shown in Fig. 

5(1), when the vortex ring approaches the sphere, the 

intersection of the ring core is deformed to be an elliptical 

shape. Then, a very thin boundary layer is generated near the 

sphere (Fig. 5(2)). In Fig. 5(3), the boundary layer stretches 
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and it rapidly grows and separates from the spheroid. At the 

same time, the radius of the primary ring increases in 

response to the presence of sphere and the production of 

adverse pressure gradient at the solid wall [4]. As the 

interaction continues, the boundary layer rolls up from the 

sphere and forms a secondary vortex. Since these two vortex 

rings have opposite sign vorticity, the secondary vortex 

expands rapidly and the primary and secondary vortex rings 

wrap around each other. Figs. 5(4) and 5(5) show that the 

primary ring starts to decelerate considerably and the 

secondary vortex ring revolves as a satellite around the 

outside of the primary vortex core. Due to the secondary 

vortex, the primary ring was elongated and lost its elliptical 

form of the ring core and its radius does not increase as 

shown in Fig. 5(6). At this point, the primary ring stops its 

forward moving (the z-direction), while the remainder of the 

secondary vortex ring retains its link with the solid surface 

and may evolve a tertiary vortex but it is too weak to visualize 

[4]. As shown in Figs. 5(7) and 5(8), the elongated primary 

ring forms a ‘wheel hub’ structure and pinches off. The ring 

core changes to an elliptical shape again. Then, the primary 

ring restarts its forward motion and the radius reaches an 

approximately constant value. Finally, two distinct vortex 

rings are formed in Fig. 5(9). The primary ring continues its 

forward movement at a fixed velocity and the second ring is 

almost stationary around the sphere. 

 

 
Fig. 5. Vortex structure evolution of the ring impacting a sphere for Re = 600 

and the radius of the sphere is 4/15 r0. 

 

We explain why the second ring is almost stationary in the 

following. Obviously, the circulations of the secondary and 

the primary vortices are opposite, and the induced 

translational velocities are also opposite. On the other hand, 

the secondary vortex is weak and inside the velocity field 

dominated by the primary vortex. The induced upward 

translational velocity of the secondary vortex may be 

canceled by the downward velocity induced by the primary 

vortex. Hence, the secondary vortex may be stationary at that 

time interval we are interested in. 

 The evolution of the radius and translational velocity of 

the ring can be analyzed in detail in the follows. Fig. 6 shows 

the locations of x and z of the primary vortex ring, which 

were obtained by tracking the peak vorticity of the vortex 

center in the (x, z)− plane. It is seen that when the ring 

approaches the sphere, the velocity of the ring keeps constant 

and the displacement of x stays zero. As the ring goes closer 

to sphere, its radius begins to expand. During this time, the 

boundary layer starts to roll up and gradually lead to the 

secondary vorticity. At T=35, the primary ring nearly stops its 

forward motion. In this moment, the primary and secondary 

vortex rings wrap around each other. About the time of T=60, 

the primary ring pinches off. It restarts its forward motion 

with an elliptical ring core. The translational velocity is 

smaller compared to the initial speed. Finally, the ring moves 

with a constant velocity and its radius almost reaches a 

constant.                   

    
Fig. 6. Primary vortex ring location x and z as a function of 

time in the (x, z)-plane. 

 

 Cases of spheres with smaller radius r = 1/6r0 and 1/15r0 

are simulated. Fig. 7 shows the evolution of vortex rings with 

r = 1/15 r0 in the (x, z)-plane, which is qualitative similar to 

the behavior of the vortex rings in the case of r = 4/15 r0, 

except for the magnitude of vorticity. 

 

 
Fig. 7. The evolution of vortex impacting a small sphere in the (x, z)-plane. 

 

Fig. 8 shows a quantitative comparison of the trajectories 

of the cases r = 1/6 r0 (open symbols) and r = 4/15 r0 (filled 

symbols). For the case of 1/6r0, the generated secondary 

vortex detaches from the sphere later than the case of 4/15 r0. 

It seems the radius of the sphere would affect the final 

position of the secondary vortex. For a smaller sphere, the 

secondary vortex stays far away from the sphere. That is 

because when the sphere is large, the secondary vortex which 

is generated from the sphere experiences a stronger vortex 
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stretching. 

 
Fig. 8.The trajectory of the vortex rings impacting different spheres. Filled 

symbols represent the case of  r = 4/15 r0 and open symbols represent the 

case of  r = 1/6 r0. 

 

 

[8] CONCLUSION 

    In this paper, a three-dimensional vortex ring impacting a 

sphere is studied using the MRT-LBM. The evolution of the 

vorticity on the symmetric planes, trajectories of vortex 

center and the effects of sphere size on the evolution of vortex 

structure are discussed in detail. 

When the vortex ring impacting with a sphere, the 

interaction is described as the following three stages. Firstly, 

the secondary vortex is generated as the stretching of 

boundary vorticity at the beginning of impacting. In the 

second stage, the primary and secondary vortices expand and 

shrink radically and will wrap around each other. Finally, the 

primary vortex ring will recover from the wheel hub 

structure. 

The trajectories of the primary and secondary vortices 

demonstrate that the wrapping pattern of primary and 

secondary vortex rings is very different from the situation of 

the vortex ring impacting a plate. The evolution of vortex 

structure seems sensitive to the size of the sphere. When the 

sphere is smaller, the primary ring expands slowly and 

eventually, the secondary vortex stays further from the 

sphere. 
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