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Abstract — A theory of the rate of increase in intravalley 

acoustic phonons due to inelastic interaction of the 

nonequilibrium electrons with the deformation 

potential acoustic phonons is developed in a two- 

dimensional electron gas (2DEG) formed in 

semiconductor interfaces  under the condition of low 

lattice temperature when the approximations of the 

well-known traditional theory are not valid. The rate is 

estimated for an n-channel (100) oriented Si inversion 

layer and the significance of the phonon energy in the 

study of electron transport in 2DEG is discussed. 
 

Index Terms — Semiconductor, Inversion Layer, Phonon. 

 

I. INTRODUCTION 

The study of the electrical transport in the two- 

dimensional electron gas (2DEG) formed in 
semiconductor inversion and accumulation layers  of 

metal-oxide-semiconductor field-effect transistors 

(MOSFET) has been largely incited by its fundamental 

physical importance as well as  possible device 

applications [1-4]. 

The electron transport in a 2DEG is controlled by various 

scattering mechanisms like electron-lattice scattering, impurity 

and surface roughness scattering near the oxide-semiconductor 

interface under the prevalent range of the lattice temperature 𝑇𝐿  

and carrier concentration 𝑁𝑖 . At lower temperatures the 
intravalley acoustic phonon and impurity scatterings 

dominate. The optical and intervalley phonon scatterings can 

be important only at high temperatures when an 

appreciable number of corresponding phonons is excited or in 

the presence of a high electric field when the nonequilibrium 

electrons can emit high-energy phonons. It is well known that 

there is a range of lattice temperature   𝑇𝐿 < 20 K   when 

the free carriers interact dominantly with intravalley 

deformation potential acoustic phonons and the acoustic 

phonon scattering plays an important role in controlling the 

transport characteristics if the content of impurity atoms in 
the system under study is relatively low [1-13]. It should be 

borne in mind that the possibility of obtaining the materials 

of higher and higher purity is not beyond the scope of the 

present day advanced semiconductor technology. Again at 

such low temperatures the electrons become hot in 

relatively weak fields of the order of only a few volts per 
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centimeter. The electron transport under these conditions is 

limited by the acoustic scattering of the nonequilibrium 

carriers [14, 15]. Thus the study of the problem of electrical 

transport in semiconductors at low lattice temperatures has 

become interesting.  

Useful results on the study of the transport in 2DEG at 

low lattice temperatures have already been reported. The 

2DEG in GaAs has been realized by Störmer et al. [9], who 

employed a GaAs-GaxAl1-xAs heterostructure and observed 

Shubnikov-de Haas oscillations around 4.2 K and reported 
the mobility values at the same temperatures.  A theory of 

intravalley acoustic phonon scattering of the free carriers has 

been developed in 2DEG at low temperatures and the 

corresponding  scattering rates are used to obtain the zero- 

field mobility characteristics in Si inversion layers with the 

help of Monte Carlo simulation of velocity autocorrelation 

function [11]. 

The purpose of this article is to calculate the rate of 

increase of intravalley acoustic phonon due to scattering 

of the nonequilibrium electrons with acoustic mode 

lattice vibrations in a 2DEG system under the condition 

of low lattice temperature. This rate has already been 
calculated in bulk semiconductor with the help of 

traditional theory [14] as well as under the condition of 

low temperature when the phonon energy cannot be 

neglected in comparison to the carrier energy [16].  

II. THEORY 

In an oxide-semiconductor interface, we consider 

carrier transitions between two states  𝑘   and  𝑘  + 𝑞  in 
the course of a collision accompanied with either 

emission or absorption of a phonon of wave vector 𝑞 , 
resulting in an increase in  𝑁𝑞  , the number of phonons. 

The rate of increase in the number of phonons can be 

written using the perturbation theory as [14] 
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2
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where the square of the matrix element of the electron-lattice 

scattering is given by [6] 
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where  𝛿𝑁𝑞  = +1  for emission, 

        𝛿𝑁𝑞  = −1  for absorption. 
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Here ℰ𝑎  is the effective deformation potential constant 

which assumes a value larger than that for the bulk 
material for higher-order subbands [6]. Vass et al [17] 

developed a theory to determine the surface deformation 

potential constant ℰ𝑎  in terms of a bulk value of the 

deformation potential ℰ1 and carrier concentration 𝑁𝑖 as 

ℰ𝑎 = ℰ1 + 2.5 × 10−8 × 𝑁𝑖
2/3

    eV. 

The parameter 𝑠 is the surface area, 𝑑 is the width of the 

layer of lattice atoms with which the electrons can 

interact, and 𝜌𝑣  is the mass density. The frequency of 

the lattice vibration 𝜔𝑞 = 𝑢𝑙𝑞, 𝑢𝑙  is the acoustic 

velocity. The hot electron distribution function 𝑓0 𝑘    is 

given by the Maxwell-Boltzmann distribution at an 

effective electron temperature 𝑇𝑒  as [14] 

𝑓0 𝑘   =
𝑁𝑖

𝑁𝐶
2𝐷 𝑒

−𝜖
𝑘   

/𝑘𝐵𝑇𝑒 . 

Here 𝑘𝐵 is the Boltzmann constant and 𝜖𝑘    is the energy 

of the electron which can be given for spherical constant 

energy surfaces as [6]   

𝜖𝑘  =
ℏ2𝑘2

2𝑚∥
∗   , 

where ħ is the Dirac constant, and 𝑚∥
∗ is the effective 

mass of the electron parallel to the interface. The 

effective density of state 𝑁𝐶
2𝐷  in 2DEG can be given 

as[18] 

𝑁𝐶
2𝐷 =

𝑚∥
∗

𝜋ℏ2
𝑘𝐵𝑇𝑒 . 

The summation over two-dimensional lattice wave 

vector 𝑘   in Eq.(1) can be transformed into integral as 
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Under the condition of low temperature since the 

phonon energy cannot be neglected, the limits of 

integration over 𝑘   as ascertained from the energy  and 
momentum balance equations may be taken to be 

 𝑞/2 −𝑚∥
∗𝑢𝑙/ℏ  and ∞. If 𝑓0 (𝑘  + 𝑞 ) i s expanded in a 

Taylor ’s series around 𝑘    then one can obtain from 

Eq.(2), the rate of increase in the number of phonons as 
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Here 
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Γ 𝑚 ,𝑛  is incomplete Γ −function. 

 Under the condition of high lattice temperature 
  𝑇𝐿 > 20 K   when the phonon energy can indeed be 

neglected and the phonon ensemble obeys the 

equipartition law then the rate of increase in the number 

of acoustic phonons can be given as 

  

 
𝜕𝑁𝑞  

𝜕𝑡
 =

𝒞𝒶 𝜋 𝑁𝑖

 𝑇𝑛
𝑒
− 

𝛾
𝑘𝐵𝑇𝐿𝑇𝑛  ,                   (4) 

where 𝛾 =
 𝑘𝐵𝑇𝐿 

2

16𝜀𝑠
𝑥2. 

III. RESULT AND DISCUSSION 

To observe the effect of phonon energy on the rate of 

increase in the phonon number due to the interaction of the 

free carriers with the acoustic phonon in  quantized surface 

layers we apply the above theory for an n-channel (100) 

oriented Si inversion layer with the material parameter 

values [11] : ℰ1 = 9.8 eV , 𝑢𝑙 =  9.037 × 103  m s−1 ,  

𝜌𝑣 = 2.329 × 103  kg m−3  ,  𝜖𝑠𝑐 = 11.9, longitudinal 

effective mass 𝑚𝑙
∗ = 0.96𝑚0  ,  transverse effective mass 

𝑚𝑡
∗ = 0.19𝑚0 ,  𝑚0  being the free electron mass. At low 

lattice temperatures one may consider presumably the 

electrons occupy only the lowest subband when the layer 

thickness 𝑑 is given by  ℏ2𝜖𝑠𝑐/2𝑚⊥
∗ 𝑒2𝑁𝑖 

1/3𝛾0 . Here 𝛾0  is 

the zeroth root of the Airy’s function. For the (100) 
surface of Si the six valleys are not equivalent. The two 

equivalent valleys for which 𝑚∥
∗ = 𝑚𝑡

∗, 𝑚⊥
∗ = 𝑚𝑙

∗ occupy 

the lowest subband [1,4,6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 : Rate of increase of phonon number in Si(100) 

layer due to interaction of nonequilibrium electrons 

with the intravalley acoustic phonons. Curve 1 and 2 
are for lattice temperatures of 4 and 20 K 

respectively, of which the solid curves are obtained 

from the theory where the phonon energy is taken into 

account [Eq.(3)] and the dashed curves are obtained 

from the traditional theory where the phonon energy 

is neglected [Eq.(4)]. 
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From the Fig.1 it is obvious that under the condition of low 

temperature when the deformation potential acoustic phonon 
energy is taken into account in the energy balance equation 

with sufficient precision, the number of phonons increases at 

a slower rate compared to what predicted from the traditional 

theory where the acoustic phonon energy is neglected in the 

calculation even at lower temperatures. It is also observed 

that (𝜕𝑁𝑞  /𝜕𝑡)  is more with the lowering of lattice 

temperature at a particular 𝑇𝑛   whether the phonon 

energy is taken into account or not. Again as expected 
the discrepancy between the results of the two theories 

is more when the lattice temperature is lower as shown 

by curves marked 1 for the lattice temperature of 4 K in 

comparison to the curves marked 2 for the lattice 

temperature of 20 K. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

In Fig.2 the dependence of the increase in phonon 
number on phonon wave vector has been compared for 

different electron temperature at a particular lattice 

temperature. It may be noted that (𝜕𝑁𝑞  /𝜕𝑡) decreases with 

phonon wave vector 𝑞 at a faster rate with the lowering 

of  𝑇𝑛 . But the rate of increase in phonon number is more 

for higher electron temperature for a particular 𝑞 . This 
apart, it is observed that the difference in results obtained 

by the two theories is more for lower values of electron 

temperature.  

IV. CONCLUSION 

 The results from the figures reveal how significantly 

the finite value of the acoustic phonon energy affects the 

rate of increase in the phonon number at any 𝑇𝑛  for 
different values of the lattice temperatures in 

comparison to what follows from the traditional theory 

where the phonon energy is indeed neglected even at 

lower temperatures. So care should be taken to account 

for the finite energy of the acoustic phonon or their true 
energy distribution whenever any study relating to 

electron-phonon interaction is done particularly at low 

temperatures.  
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Fig.2 : Dependence of the rate of increase of the 

number of phonons upon the phonon wave vector 𝑥 in 

Si(100) layer for different values of 𝑇𝑛  . Curves 1 and 

2 are for 𝑇𝑛 = 2.5 and 𝑇𝑛 = 10 respectively. The solid 

curves are obtained from the theory where the phonon 

energy is taken into account [Eq.(3)] and the dashed 

curves are obtained from the traditional theory where 

the phonon energy is neglected [Eq.(4)]. 


