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ABSTRACT: A4 micro strip-fed printed bow-tie antenna is presented inorder to achieve wide bandwidth, high
gain, and size reduction. A comparisonbetween the bow-tie and the quasi-Yagi (dipole and director)antennas
shows that the bow-tie antenna has a wider bandwidth, highergain, lower front-to-back ratio, lower cross-
polarization level, andsmaller size. Two-element arrays are designed and their characteristics are compared.
The bow-tie antenna yields lower coupling for the same distance between elements.
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1. INTRODUCTION
Printed microstrip antennas are widely used in phased-array applicationsbecause they exhibit a very low profile,
small size, lightweight, low cost, high efficiency and easy methods of fabricationand installation. Among the
most widely used printed antennas inphased-array systems are printed dipoles and quasi-Yagi antennasfed by
coplanar strip line (CPS), which are usually used to yieldend-fire radiation patterns. In order to feed this
antenna, someresearchers suggest microstrip-to-CPS transition that includes al80° phase shifter [1]. Other
researchers feed the dipole with twomicrostrip lines where the upper is an extension of the microstripfeed line
and lower is connected to the ground plane directly orthrough a tapered microstrip [2, 3]. However, the latter
methodssuffer from low radiation efficiency (88% in [2]) and low bandwidth(37% in [2] and 19% in [3]).
Moreover, unbalanced radiationpatterns are noticed in [2] and omnidirectional patterns areobtained in [3]. Other
researchers use coplanar waveguide (CPW) -to-CPS transitions to feed printed dipole and bow-tie antennas
[4].However, these two antennas are designed for 100 _, not 50 ,characteristic impedance, in addition to having
an omnidirectionalpattern.An attractive design that uses the transition in [1] is presentedin [5, 6] and exhibits
wide bandwidth and good radiation charac-teristics.
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Figure 1 Geometry and dimensions of the printed bow-tie antenna

The antenna consists of a half-wavelength dipole and anapproximately quarter-wavelength rectangular director
in order toincrease the gain and improve the front-to-back ratio. In this paper,the printed dipole and the director
of [5, 6] are replaced by aprinted bow-tie, which results in an improvement in bandwidth andgain. That is
because printed bow-tie antennas are planar-typevariations of the biconical antenna that has wideband
characteristics.Moreover, the radiating area of the bow-tie is larger than thatof the dipole; therefore, gain
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improvement is expected. The simulationand analysis for this new antenna are performed using thecommercial
software package an soft HFSS, which is based on thefinite-element method. The measurements of the return
loss andradiation pattern are also conducted.

2. SINGLE ELEMENT

The proposed antenna element is printed on a Rogers RT/Duroid6010/6010 LM substrate with a dielectric
constant of 10.2, athickness of 25 mil, and a conductor loss (tan ) of 0.0023. Themicrostrip-to-CPS transition is
almost the same as that in [1]. Thebow-tie geometry and dimensions are shown in Figure 1. Thequasi-Yagi
antenna [5, 6] is simulated in order to compare it withthe new bow-tie design on the same material-type
substrate andground-plane dimensions.The simulated and measured return losses of the bow-tie
antenna,compared to those of the quasi-Yagi, are shown in Figures2 and 3, respectively. According to the HFSS
simulation results,the bow-tie shows about 13% improvements in the bandwidth,where it operates from 6.8 to
11.9 GHz with a bandwidth 0f54.5%, while the quasi-Yagi operates from 7.9 to 12.1 GHz, witha bandwidth of
41.6%. In the measurements, the bow-tie showsabout 19.6% improvements in the bandwidth, where it
operatesfrom 6.7 to 12.45 GHz with a bandwidth of 60.1%, while thequasi-Yagi operates from 8.2 to 12.5 GHz,
with a bandwidth 0f41.5%.The copolarized (£ ) and cross-polarized (£ ) far-field radiationpatterns for the two
antennas are computed at 10 GHz. Figure4 shows the radiation patterns of the bow-tie antennas, while

Figure 5 shows the radiation pattern of the quasi-Yagi antenna.
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Figure 2 Computed return losses of the bow-tie and the quasi-Yagi
Antennas.

The simulation results show that at least 1.3-dB improvement inthe gain has been obtained when using the bow-
tie. The maximumgain for the bow-tie is around 5.7 dB, while it is around 4.4 dB forthe quasi-Yagi. The 3-dB
beam width in the E-plane ( x—y) isalmost the same for both antennas: 106° and 108° for the bow-tieand the
quasi-Yagi antennas, respectively. However, in the Hplane(y—z), the quasi-Yagi shows much wider beam width:
108°for the bow-tie and 153° for the quasi-Yagi antenna. The H-planepattern becomes more focused for the
bow-tie, which results inenhanced gain and reduced beam width. As shown in Figures 4 and5, the computed
front-to-back ratio is improved by 1.5 dB, whereit is around 14.1 dB for the bow-tie and 12.6 dB for the quasi-
Yagi.The cross-polarization level in the E-plane is 22.5 dB for thebow-tie, while it is 20 dB for the quasi-
Yagi, and for the H-planeit equals to 23 dB for the bow-tie and 24 dB for the quasi-Yagi,considering only the
angles defining by the 3-dB beam width.

3. TWO-ELEMENT ARRAY

Two elements of the bow-tie and quasi-Yagi antennas are simulatedand fabricated in order to compare the
coupling (521 in dB)between the array elements. The distance between elements isfixed to 15 mm, which is the
free-space half-wavelength at 10
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Figure 3 Measured return losses of the bow-tie and the quasi-Yagi antennas.
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Figure 4 Computed far-field radiation pattern for the bow-tie antenna at 10 GHz.

GHz. Photographs of the two-element arrays are shown in Figure6. Figure 7 shows a comparison of the
measured coupling betweenthe bow-tie and quasi-Yagi elements. The coupling is less betweenthe bow-tie
elements, as shown in Figure 7, where the couplingimproves by an average value of around 4 dB It is worth

mentioning
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Figure 5 Computed far-field radiation pattern for the quasi-Yagi antennaat 10 GHz.
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Figure 6 Photograph of a two-element array of the bow-tie and quasi- Yagi antennas.

That this improved coupling is also associated with antenna-size reduction, as the bow-tie edge-to-edge
dimension is 7 mmwhile that of the quasi-Yagi is 8.7 mm, which gives a 24%reduction.The co- and cross-
polarized far-field radiation patterns fortwo-element arrays of the bow-tie and quasi-Yagi antennas arecomputed
at 10 GHz. Figure 8 shows the radiation patterns of thetwo-element array of the bow-tie antenna, while Figure 9
showsthe radiation pattern of the two-element array of the quasi-Yagiantenna. According to these results,
approximately 2-dB improvementin the gain has been obtained with the bow-tie array. Themaximum gain for
the bow-tie array is around 9.3 dB, while it isaround 7.3 dB for the quasi-Yagi array. The 3-dB beam width
ofthe co-polarized pattern in the E-plane is 46° and 48° for thebow-tie and the quasi-Yagi, respectively. The
beam width in theH-plane for the quasi-Yagi is 120°, while that for the bow-tie it is90°; this are different from
that of the one-element configurationdue to the coupling between the elements. The front-to-back ratiois also
found to be improved, as it is 20.7 dB for the bow-tieantenna array and 11.7 dB for the quasi-Yagi antenna
array. Thecross-polarization level is also enhanced using bow-tie elements.In the E-plane, the cross polarization
level is -29 dB for thebow-tie while it is -26 dB for the quasi-Yagi, and for the H-planeit equals to -26 dB for the
bow-tie and -24 dB for the quasi-Yagi.

4. CONCLUSION

In this paper, a printed bow-tie antenna has been designed toreplace the dipole and the director in the printed
quasi-Yagiantenna configuration. This new bow-tie design provides widerbandwidth, smaller size, higher gain,
and smaller cross polarizationthan the quasi-Yagi, and shows an improvement in the front-to-backratios for one-
and two-element arrays. The design oflarger arrays based on this type of antenna is therefore moreappropriate
for phased-array systems.
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Figure 7 Comparison of the measured coupling for two-element arraysof the bow-tie and quasi-Yagi antennas.
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Figure 8 Computed far-field radiation pattern for the two-element arrayof the bow-tie antenna at 10 GHz.
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