VLSI Implementation of Low Power Multiplier and Accumulator Unit using SPST

MD.Riazullah(1), K.Kishore Kumar(2)
M.tech Scholar, DECS, Dr.K.V.Subbareddy Institute of Technology (1)
ASST.Professor, Dr.K.V.Subbareddy Institute of Technology (2)

Abstract: In this paper, we proposed an incipient architecture of multiplier -and-accumulator (MAC) for high-speed arithmetic and low puissance. With the rapid advances in multimedia and communication system, high capacity signal processing are in demand, so High Speed MAC are essential to amend performance of signal processing System. Multiplication occurs frequently in finite impulse replication filters, expeditious Fourier transforms, discrete cosine transforms, convolution, and other consequential DSP and multimedia kernels. The objective of a good multiplier and accumulator (MAC) is to provide a physically compact, good speed and low power consuming chip. The proposed SPST disorses the target designs into two components, i.e., the most paramount part and least paramount part (MSP and LSP), and turns off the MSP when it does not affect the computation results to preserve puissance. In this paper, we propose a high speed MAC adopting the incipient SPST implementing approach. This multiplier and accumulator is designed by equipping the Spurious Power Suppression Technique (SPST) on a modified Booth encoder which is controlled by a detection unit utilizing an AND gate. The modified booth encoder will reduce the number of partial producents engendered by a factor of 2. The SPST adder will eschew the unwanted additament and thus minimize the switching power dissipation.

Keywords: Booth encoder, computer arithmetic, digital signal processing, spurious power suppression technique, low puissance.

I. INTRODUCTION

One of the accompanying challenges in designing ICs for portable electrical contrivances is lowering down the potency consumption to perpetuate the operating time on the substratum of given circumscribed energy supply from batteries. Owing to the vigorous development of the wireless infrastructure and the personal electronic contrivances like video mobile phones, mobile TV sets, PDAs, etc., multimedia and DSP applications have been adopted in wireless environments. Incrementing ordnate dictations of high speed data signal processing motivated the researchers to seek most expeditious processors. The multiplier and multiplier-and-accumulator (MAC) [1] are the building blocks of the processor and has a great impact on the speed of the processor. MAC is the indispensable element of the digital signal and image/audio processing system such as filtering, convolution and inner products hence high speed is crucial to develop for authentic processing applications. Many researchers have endeavored in designing MAC for high computational performance and low power consumption. High throughput MAC is always a key factor to achieve high performance digital signal processing applications for authentic time signal processing applications. Since the multiplier requires the longest delay among the rudimental operation in digital system, the critical path is constrained by the multiplier. Multiplier rudimentally consists of three operational steps: Booth Encoder, Partial product reduction network (Wallace Tree) and final adder. For high speed multiplication, Modified Booth Algorithm (MBA) [4] is most commonly utilized, in which partial product is engendered from Multiplicand (X) and Multiplier (Y) .Booth multiplication sanctions for the more diminutive ,more expeditious multiplication circuits through encoding the signed bits to 2’s complement which is additionally the standard technique in chip design and provide substantial amendment by reducing the partial products. Albeit the partial products are further reduced by utilizing higher radix (4, 8, 16, 32) Booth Encoder which increases involution and ameliorates the performance[1].
II. OVERVIEW OF MAC

In this section, rudimentary MAC operation is introduced. A multiplier can be divided into three operational steps. The first is radix-2 Booth encoding in which a partial product is engendered from the multiplicand (X) and the multiplier (Y). The second is adder array or partial product compression to integrate all partial products and convert them into the form of sum and carry. The last is the final additament in which the final multiplication result is engendered by integrating the sum and the carry. If the process to accumulate the multiplied results is included, a MAC consists of four steps, as shown in Fig. 1, which shows the operational steps explicitly.

In this paper, an incipient architecture for a high-speed MAC is proposed. In this MAC, the computations of multiplication and accumulation are coalesced and a hybrid-type CSA structure is proposed to reduce the critical path and ameliorate the output rate. It utilizes MBA algorithm predicated on 1’s complement number system. A modified array structure for the designation bits is utilized to increment the density of the operands. A carry look-ahead adder (CLA) is inserted in the CSA tree to reduce the number of bits in the final adder. In additament, in order to increment the output rate by optimizing the pipeline efficiency, intermediate calculation results are accumulated in the form of sum and carry in lieu of the final adder outputs.

A general hardware architecture of this MAC is shown in Fig. 2. It executes the multiplication operation by multiplying the input multiplier and the multiplicand. This is integrated to the antecedent multiplication result as the accumulation step.

Figure 1: Basic Arithmetic Steps of Multiplication and Accumulation

In this paper, an incipient architecture for a high-speed MAC is proposed. In this MAC, the computations of multiplication and accumulation are coalesced and a hybrid-type CSA structure is proposed to reduce the critical path and ameliorate the output rate. It utilizes MBA algorithm predicated on 1’s complement number system. A modified array structure for the designation bits is utilized to increment the density of the operands. A carry look-ahead adder (CLA) is inserted in the CSA tree to reduce the number of bits in the final adder. In additament, in order to increment the output rate by optimizing the pipeline efficiency, intermediate calculation results are accumulated in the form of sum and carry in lieu of the final adder outputs.

A general hardware architecture of this MAC is shown in Fig. 2. It executes the multiplication operation by multiplying the input multiplier and the multiplicand. This is integrated to the antecedent multiplication result as the accumulation step.

Figure 2: Hardware architecture of general MAC.

Modified Booth Encoder

In order to achieve high-speed multiplication, multiplication algorithms utilizing parallel counters, such as the modified Booth algorithm has been proposed, and some multipliers predicated on the algorithms have been implemented for practical use. This type of multiplier operates much more expeditious than an array multiplier for longer operands because its computation time is proportional to the logarithm of the word length of operands.

Figure 3. Modified Booth Encoder
Booth multiplication is a technique that sanctions for more minuscule, more expeditious multiplication circuits, by recoding the numbers that are multiplied. It is possible to reduce the number of partial products by a moiety, by utilizing the technique of radix-4 Booth recoding. The fundamental conception is that, in lieu of shifting and integrating for every column of the multiplier term and multiplying by 1 or 0, we only take every second column, and multiply by ±1, ±2, or 0, to obtain identically tantamount results. The advantage of this method is the halving of the number of partial products. To Booth recode the multiplier term, we consider the bits in blocks of three, such that each block overlaps the precedent block by one bit. Grouping commences from the LSB, and the first block only utilizes two bits of the multiplier. Figure 3 shows the grouping of bits from the multiplier term for use in modified booth encoding.

\[
\begin{array}{ccccccc}
0 & 1 & 3 & 1 & 1 & 0 & 1 & 0
\end{array}
\]

Fig.3.1 Grouping of bits from the multiplier term

Each block is decoded to engender the correct partial product. The encoding of the multiplier Y, utilizing the modified booth algorithm, engenders the following five signed digits, -2, -1, 0, +1, +2. Each encoded digit in the multiplier performs a certain operation on the multiplicand, X, as illustrated in Table 1 for the partial product generation, we adopt Radix-4 Modified Booth algorithm to reduce the number of partial products for roughly one moiety. For multiplication of 2’s complement numbers, the two-bit encoding utilizing this algorithm scans a triplet of bits. When the multiplier B is divided into groups of two bits, the algorithm is applied to this group of divided bits. Figure 4, shows a computing example of Booth multiplying two numbers ”2AC9” and “006A”. The shadow denotes that the numbers in this component of Booth multiplication are all zero so that this component of the computations can be neglected. Preserving those computations can significantly reduce the potency consumption caused by the transient signals. According to the analysis of the multiplication shown in figure 4, we propose the SPST-equipped modified-Booth encoder, which is controlled by a detection unit. The detection unit has one of the two operands as its input to decide whether the Booth encoder calculates redundant computations. As shown in figure 9. The latches can, respectively, freeze the inputs of MUX-4 to MUX-7 or only those of MUX-6 to MUX-7 when the PP4 to PP7 or the PP6 to PP7 are zero; to reduce the transition power dissipation. Figure 10, shows the booth partial product generation circuit. It includes AND/OR/EX-OR logic.

III. PARTIAL PRODUCT GENERATOR

For the partial product generation, we adopt Radix-4 Modified Booth algorithm to reduce the number of partial products for roughly one moiety. For multiplication of 2’s complement numbers, the two-bit encoding utilizing this algorithm scans a triplet of bits. When the multiplier B is divided into groups of two bits, the algorithm is applied to this group of divided bits. Figure 4, shows a computing example of Booth multiplying two numbers ”2AC9” and “006A”. The shadow denotes that the numbers in this component of Booth multiplication are all zero so that this component of the computations can be neglected. Preserving those computations can significantly reduce the potency consumption caused by the transient signals. According to the analysis of the multiplication shown in figure 4, we propose the SPST-equipped modified-Booth encoder, which is controlled by a detection unit. The detection unit has one of the two operands as its input to decide whether the Booth encoder calculates redundant computations. As shown in figure 9. The latches can, respectively, freeze the inputs of MUX-4 to MUX-7 or only those of MUX-6 to MUX-7 when the PP4 to PP7 or the PP6 to PP7 are zero; to reduce the transition power dissipation. Figure 10, shows the booth partial product generation circuit. It includes AND/OR/EX-OR logic.
partial products in which the first partial product is stored in 'q'. Similarly, the second, third and fourth partial products are stored in 4-bit vector n, x, y.

The multiplication second step reduces the partial products from the preceding step into two numbers while preserving the weighted sum. The sought after product P is the sum of those two numbers. The two numbers will be integrated during the third step. The "Wallace trees" synthesis follows the Dadda's algorithm, which assures of the minimum counter number. If on top of that we impose to reduce as tardy as (or as anon as) possible then the solution is unique. The two binary number to be integrated during the third step may withal be optically discerned a one number in CSA notation (2 bits per digit).

Fig 5. Booth Encoder

Fig 6. Booth Decoder

IV. PROPOSED SPST

Besides the explications presented in our former studies, this paper provides further illustrations of the proposed SPST as described in the following sections.

The SPST utilizes a detection logic circuit to detect the efficacious data range of arithmetic units, e.g., adders or multipliers. When a portion of data does not affect the final computing results, the data controlling circuits of the SPST latch this portion to eschew useless data transitions occurring inside the arithmetic units. Besides, there is a data asserting control realized by utilizing registers to further filter out the useless spurious signals of arithmetic unit every time when the latched portion is being turned on. This asserting control brings evident power reduction. Figure 5 shows the design of low power adder/subtractor with SPST.

Fig 7. Spurious transition cases in multimedia/DSP processing

\begin{align*}
\end{align*}
\begin{align*}
\end{align*}
Close &= (\hat{A}_{ori} + \hat{B}_{ori}) / (\hat{A}_{ori} + \hat{B}_{ori});

The adder/subtractor is divided into two components, the most consequential part (MSP) and the least consequential part (LSP). The MSP of the pristine adder/subtractor is modified to include detection logic circuits, data controlling circuits, sign extension circuits, logics for calculating carry in and carry out signals. The most paramount part of this study is the design of the control signal asserting circuits, denoted
as asserting circuits in Figure 5. Albeit this asserting circuit brings evident power reduction, it may induce adscititious delay. There are two implementing approaches for the control signal assertion circuits. The first implementing approach of control signal assertion circuit is utilizing registers. This is illustrated in Figure 6. The three output signals of the detection logic are proximate, Carr_ctrl, sign. The three output signals the detection logic unit are given a certain amount of delay afore they assert. The delay \(\delta \), used to assert the three output signals, must be set in a range of \(\delta < \delta < \delta \), where \(\delta \) denotes the data transient period and \(\delta \) denotes the earliest required time of all the inputs. This will filter out the glitch signals as well as to keep the computation results veridical. The restriction that \(\delta > \delta \) must be more preponderant than \(\delta \) to ensure the registers from latching the erroneous values of control customarily decreases the overall speed of the applied designs.

When the detection-logic unit remains its decision:

No matter whether the last decision is turning on or turning off the MSP, the delay of the detection logic is negligible because the path of the combinational circuitry (i.e., the 16-bit adder/subtractor in this design example) remains identically tantamount. From the analysis earlier, we can ken that the total delay is affected only when the detection-logic unit turns on the MSP. However, the detection-logic unit should be a speed-oriented design. When the SPST is applied on combinational circuitries, we should first determine the longest transitions of the intrigued cross sections of each combinational circuitry, which is a timing characteristic and is withal cognate to the adopted technology. The longest transitions can be obtained from analyzing the timing differences between the earliest advent and the latest advent signals of the cross sections of a combinational circuitry. Then, a delay engenderer homogeneous to the delay line utilized in the DLL.

Fig 8. Low-power adder/subtractor design example adopting the proposed SPST.

Fig 9. SPST Modified Booth encoder

Simulation Results of MAC:

Fig 10 Simulation Waveform of MAC
V. CONCLUSION

In this project, we propose a high speed low-power multiplier and accumulator (MAC) adopting the new SPST implementing approach. This MAC is designed by equipping the Spurious Power Suppression Technique (SPST) on a modified Booth encoder which is controlled by a detection unit using an AND gate. The modified Booth encoder will reduce the number of partial products generated by a factor of 2. The SPST adder will avoid the unwanted addition and thus minimize the switching power dissipation. The SPST MAC implementation with AND gates have an extremely high flexibility on adjusting the data asserting time. This facilitates the robustness of SPST can attain 30% speed improvement and 22% power reduction in the modified booth encoder. This design can be verified using Modelsim and Xilinx using verilog.

REFERENCES

