Some Hamiltonian Properties and Wiener Index of Graphs

Vaishali Patil¹ 'Sonika Sharma²
Department of F.E.
Imperial College of engineering and research
Wagholi Pune

Abstract— The Wiener index of a connected graph is defined as the sum of distances between all pairs of vertices in the graph. L.Yang presented a sufficient condition in terms of the Wiener index for a graph to be traceable. Here we present result based on the Wiener index for a graph to be Hamiltonian or Hamilton-connected in this paper.

Keywords: Hamiltonian, Hamiltonian-connected, Wiener Index.

AMS Subject Classification: 05C12, 05C45.

I. INTRODUCTION

We consider only undirected finite graphs without multiple edges or loops. For a graph G = (V; E), we use n and e to denote its order |V| and size |E| respectively. For both vertices u and v in a graph G, Let $d_G(u, v)$ be denote the distance between them. If a cycle C in a graph G contains all the vertices of G then C is called a Hamiltonian cycle of G. If a graph G has a Hamiltonian cycle then graph G is called Hamiltonian graph. A path P in a graph G is called a Hamiltonian path of G if G contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. A graph G is called Hamilton-connected if for every pair of vertices in G there is a Hamiltonian path between them. If G and G are both vertex-disjoint graphs, we use $G \vee G$ to denote the join of G and G and G are with n elements.

For a connected graph G, its Wiener index [8], denoted by W (G), it is defined as

$$\begin{array}{l}
W (G) \\
= \\
\sum_{\{u,v\}\subseteq V(G)} d_G(u,v)
\end{array}$$

If we use $\widehat{D}_G(v)$ to denote $\sum_{u \in V(G)} d_G(u,v)$,

ISSN: 2278 - 7798

then $W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v)$. It can be easily verified that $\widehat{D}_G(v) \ge d(v) + 2(n-1-d(v))$.

For a nontrivial connected graph G, its Harary index [5, 7] is

defined as
$$\sum_{\{u,v\}\subseteq V(G)} \frac{1}{d_G(u,v)}$$

In [4], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary index. Li [6] presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian or Hamilton-connected using some proof ideas in [4]

In [9], Yang presented the following sufficient condition for a graph to be traceable by using Wiener index.

Theorem 1.1. [9]. Let G be a connected graph of order n 4. If $W\left(G\right) \leq \frac{(n+5)(n-2)}{2}$ then G is traceable,

$$G = K_1 \vee (K_{n-3} \cup 2K_1)$$
 or $K_2 \vee (3K_1 \cup K_2)$ or $K_4 \vee 6K_1$.

In this paper, we combine the ideas in [9] and [6] to present the following sufficient conditions in terms of the Wiener index for a graph to be Hamiltonian or Hamilton-connected. **Theorem 1.2.** Let G be a connected graph of order $n \ge 4$. If

$$W(G) \le \frac{n^2 + n - 6}{2}$$
 then G is Hamiltonian Connected

unless
$$G = K_2 \vee (K_1 \cup K_{n-3})$$
 or $K_3 \vee (3K_1)$

Theorem 1.3. Let G=(X, Y; E), where $X=\{x_1, x_2,..., x_n\}, Y=\{y_1,y_2,...,y_n\}$ and $n\geq 2$ be a connected bipartite graph. If $W(G)\leq 3n^2-2n+2$; then G is Hamiltonian,

graph. If W (G) \leq 3n - 2n + 2; then G is Hamiltonian, unless G = P₄, a path having four vertices and three edges.

Theorem 1.4. Let G be a 2-connected graph of order $n \ge 1$

12. If
$$W(G) \le \frac{n^2 + 3n - 13}{2}$$
 then G is Hamiltonian, unless

$$G = K_2 \vee ((2K_1) \cup K_{n-4}).$$

Theorem1.5. Let G be a k-connected graph of order n. If $W(G) \le \frac{n(n-1)+(K+1)(n-k-1)-1}{2}$ then G is

Hamiltonian.

II Preliminary Results

Corollary 2.1. Let G be a graph of order $n \ge 3$ with degree sequence $d_1 \le d_2 \le ... \le d_n$. If

$$d_k \le k < \frac{n}{2} \Longrightarrow d_{n-k} \ge n - k$$
, then G is Hamiltonian.

Corollary 2.2. Let G be a graph of order $n \ge 3$ with degree sequence $d_1 \le d_2 \le ... \le d_n$. If

$$2 \le k \le \frac{n}{2}$$
, $d_{k-1} \le k \Longrightarrow d_{n-k} \ge n-k+1$, then G is

Hamilton-connected.

Corollary 2.3. Let G = (X, Y; E) be a bipartite graph such that

$$X = \{x_1, x_2, ..., x_n\}, Y = \{y_1, y_2, ..., y_n\} \text{ n} \ge 2,$$
and $d_G(x_1) \le d_G(x_2) \le ... \le d_G(x_n),$

$$d_G(y_1) \le d_G(y_2) \le ... \le d_G(y_n).$$
If $d_G(x_k) \le k < n$

$$\Rightarrow$$
 d_G $(y_{n-k}) \ge n-k+1$,

then G is Hamiltonian.

Corollary 2.4. [3] Let G be a 3-connected graph of order $n \ge 18$. If $e(G) \ge C(n-3,2)+9$

then G is Hamiltonian or $G = K_3 \vee ((3K_1) \bigcup K_{n-6})$. Corollary 2.5. [3] Let G be a k-connected graph of order n. If

$$e(G) \ge C(n,2) - (k+1)(n-k-1)/2 + 1$$
 then G i

Hamiltonian.

Note that Corollary 2.1 is Corollary 3 on Page 208 in [1], Corollary 2:2 is Theorem 12 on Page 218 in [1], Corollary 2.3 is Corollary 5 on Page 210 in [1], and Corollary's 2:4 and 2:5 can be found in [3].

III Main Results

Proof of Theorem 1.2. Let G be a graph which satisfies the conditions in Theorem 1.1. Assume that G is not Hamilton-connected. Then, from corollary 2:2, there exists an integer k such that $d_{k-1} \le k$ and $d_{n-k} \le n - k$.

Therefore.

$$\begin{split} W(G) &= \frac{1}{2} \sum_{v \in V(G)} \widehat{D_G}(v) \\ &\geq \frac{1}{2} \sum_{v \in V(G)} (d_G(v) + 2(n - 1 - d_G(v))) \\ &= \frac{1}{2} \sum_{v \in V(G)} (2(n - 1 - d_G(v))) \\ &= n(n - 1) - \sum_{v \in V(G)} d_G(v) \\ &\geq n(n - 1) - \frac{1}{2} (k(k - 1) + (n - 2k + 1)(n - k) + k(n - 1)) \\ &= \frac{n^2 + n - 6}{2} + \frac{(k - 2)(k - 3)}{2} + (k - 2)(n - 2k). \end{split}$$

such that W(G) =
$$\frac{n^2 + n - 6}{2}$$

where k = 2 or (k=3 and n = 2k),

$$d_1 = \cdots = d_{k-1} = k$$
, $d_k = \cdots = d_{n-k} = n - k - 1$

and
$$d_{n-k+1} = \cdots = d_n = n-1$$
.

If k=2, then
$$d_1=2$$
, $d_2=d_3\cdots=d_{n-2}=n-2$

and
$$d_{n-1} = n - 1$$
.

Thus
$$G = K_2 \vee (K_1 \bigcup K_{n-3}),$$

which is not Hamiltonian.

If k = 3 and n = 2k, then we have that n = 6. Therefore $d_1 = 6$

$$3, d_2 = 3, d_3 = 3, d_4 = 5, d_5 = 5$$

and $d_6 = 5$. Hence $G = K_3 \ (3K_1)$, which is not Hamilton-connected.

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose that G is not Hamiltonian. Then, from corollary 2.3, there exists an integer k < n such that $d_G(x_k) \le k$ and $d_G(y_{n-k}) \le n-k$. Next we find an upper bound for

$$\widehat{D}_G(x_1)$$
. Let $N_G(x_1) = \{z_1, z_2, ..., z_s\}$ be the neighbours of x_1 , where $s = D_G(x_1)$.

Then $d_G(x_1, z_i) = 1$ for each $z_i \in N_G(x_1)$, $d_G(x_1, x_i) \ge 2$ for each x_i with $2 \le i \le n$, and $d_G(x_1, y_i) \ge 3$ for each $y_i - N_G(x_1)$. Thus

$$\widehat{D}_G(x_1) \ge d_G(x_1) + 2(n-1) + 3(n - d_G(x_1))$$

= $5n - 2 - 2d_G(x_1)$.

Similarly,

we have that for each $2 \le i \le n$ and each $1 \le i \le n$,

$$\widehat{D}_{G}(x_{i}) \ge d_{G}(x_{i}) + 2(n-1) + 3(n - d_{G}(x_{i}))$$

$$= 5n - 2 - 2d_{G}(x_{i});$$

$$\widehat{D}_{G}(y_{j}) \ge d_{G}(y_{j}) + 2(n-1) + 3(n - d_{G}(y_{j}))$$

$$= 5n - 2 - 2d_{G}(y_{i})$$

Therefore,

$$W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D_G}(v)$$

$$e(G) \le C(n, 2) - (k+1)(n-k-1)/2.$$
Therefore we consider,
$$\ge \frac{1}{2} \left(10n^2 - 4n - 2\sum_{i=1}^n (d_G(x_i) + d_G(y_i)) \right) \qquad W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D_G}(v)$$

$$\ge \frac{1}{2} \left(10n^2 - 4n - 2((k+(n-k))^2 - 2k(n-k) + n^2)) \qquad \ge \frac{1}{2} \sum_{v \in V(G)} (d_G(v) + 2(n-1-d_G(v)))$$

$$= \frac{1}{2} \left(10n^2 - 4n - 2((k^2 + (n-k)n + (n-k)^2 + kn)) \right) \qquad = \frac{1}{2} \sum_{v \in V(G)} (2(n-1) - d_G(v))$$

$$= \frac{1}{2} \left(10n^2 - 4n - 2((k^2 - 2k(n-k))) \right) \qquad = n(n-1) - \frac{1}{2} \sum_{v \in V(G)} d_G(v)$$

$$= 3n^2 - 2n + 2k(n-k) + n^2)$$

$$= 3n^2 - 2n + 2 \times 1 \times 1$$

$$= 3n^2 - 2n + 2 \times 1 \times 1$$

$$= 3n^2 - 2n + 2 \cdot 1 \times 1$$

$$= 3n^2 - 2n + 2 \cdot 1 \times 1$$

$$= n(n-1) - C(n, 2) + (k+1)(n-k-1)/2$$

$$= \frac{n(n-1) + (k+1)(n-k-1)}{n},$$

From $W(G) \le 3n^2 - 2n + 2$, $1 \le k < n$, we have that

$$k = 1$$
, $n - k = 1$, $dG(x_1) = 1$, $dG(x_2) = 2$,

 $d_G(y_1) = 1$ and $d_G(y_2) = 2$. Thus $G = P_4$, this is not Hamiltonian.

This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. Let G be a graph satisfying the conditions in Theorem 1.3. Note that if G

$$K_2 \vee ((2K_1) \bigcup K_{n-4})$$
, then $W(G) = \frac{n^2 + 3n - 14}{2}$.

Assume that G is not Hamiltonian and G is not

$$K_2 \vee ((2K_1) \bigcup K_{n-4})$$
 . Then, from corollary 2:4, we have that $e(G) \leq C(n-2,2)+3$. So we have,
$$W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D_G}(V)$$

$$\geq \frac{1}{2} \sum_{v \in V(G)} (d_G(V) + 2(n-1-d_G(V)))$$

$$= \frac{1}{2} \sum_{n \in V(G)} (2(n-1-d_G(V)))$$

$$= n(n-1) - \frac{1}{2} \sum_{v \in V(G)} d_G(V)$$

$$= n(n-1) - e(G)$$

$$\geq n(n-1) - C(n-2,2) - 3$$

$$=\frac{n^2+3n-12}{2},$$

This is the contradiction to the assumption This completes the proof of Theorem 1.4.

Proof of Theorem 1.5. Let G be a graph satisfying the conditions in Theorem 1:4. Suppose that G is not Hamiltonian. Then, from corollary 2.5, we have that

This is the contradiction to the assumption This completes the proof of Theorem 1.5.

REFERENCES

- [1] Graphs and Hyper graphs by **Berge**, Second edition, American Elsevier Publishing Company (1976).
- [2] Graph Theory with Applications by J. Bondy and S. R. Murty, Macmillan, London and Elsevier, New York (1976).
- [3] Edge bounds in non-hamiltonian k-connected graphs by **D. Smeltzer and W. Byer,** Discrete Math., 307(2007), 1572 1579.
- [4] On Harary index and traceable graphs by **H. Hua** and **M. Wang**, MATCH Commun. Math. Comput. Chem., 70(2013), 297 300.
- [5] Reciprocal distance matrix, related local vertex invariants and topological indices by O. Ivanciuc, T.
 S. Balaban and A. T. Balaban, J. Math. Chem., 12(1993), 309 318.
- [6] Index and Some Hamiltonian properties of graphs by **R. Li, Harary**, manuscript, Nov. 2013.
- [7] On the Harary index for the characterization of chemical graphs by D. Plavsi'c, S. Nikolic, N. Trinajstic and Z. Mihalic, J. Math. Chem., 12(1993), 235 - 250.
- [8] Structural determination of paraffin boiling points by **H. Wiener**, Journal of the American Chemical Society, 69(1947), 17 20.
- [9] Wiener index and traceable graphs by L. Yang, Bulletin of the Australian Mathematical Society, 88(2013), 380 - 383.

First Author personal profile Ms. Vaishali R. Patil M.Sc. B.Ed. MBA Working as A.P. ICOER Wagholi In FE DEPT.

Second Author Ms. Sonika Sharma M.Sc. B.Ed. Working as A.P. ICOER Wagholi In FE DEPT.

ISSN: 2278 - 7798