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 

Abstract— The Wiener index of a connected 

graph is defined as the sum of distances between 

all pairs of vertices in the graph. L.Yang 

presented a sufficient condition in terms of the 

Wiener index for a graph to be traceable. Here we 

present result based on the Wiener index for a 

graph to be Hamiltonian or Hamilton-connected 

in this paper. 
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I. INTRODUCTION 

  We consider only undirected finite graphs without 

multiple edges or loops. For a graph G = (V; E), we use n and e 

to denote its order | V | and size |E| respectively. For both vertices 

u and v in a graph G, Let  dG(u, v) be denote the distance 

between them. If a cycle C in a graph G contains all the vertices 

of G then C is called a Hamiltonian cycle of G. If a graph G has 

a Hamiltonian cycle then graph G is called Hamiltonian graph. 

A path P in a graph G is called a Hamiltonian path of G if P 

contains all the vertices of G. A graph G is called traceable if G 

has a Hamiltonian path. A graph G is called Hamilton-connected 

if for every pair of vertices in G there is a Hamiltonian path 

between them. If G and H are both vertex-disjoint graphs, we 

use G   H to denote the join of G and H. We use C (n, r) to 

denote the number of r - combinations of a set with n elements. 

For a connected graph G, its Wiener index [8], denoted by W 

(G), it is defined as 
W (G) 
=

 
 , ( )

,
u v V G

Gd u v


   

If we use 
 ( )GD v  to denote  

( )

,
u G

G

V

d u v


 , 

then 
( )

1
( ) ( ).

2
G

v V G

W G D v


   It can be easily verified that 

 ( ) ( ) 2( 1 ( )).GD v d v n d v     
For a nontrivial connected graph G, its Harary index [5, 7] is 

 
 

defined as 

  , ( )

1

,u v V G Gd u v

  

 
In [4], Hua and Wang presented a sufficient condition for a 

graph to be traceable by using Harary index. Li [6] presented 

sufficient conditions in terms of the Harary index for a graph 

to be Hamiltonian or Hamilton-connected using some proof 

ideas in [4] 

In [9], Yang presented the following sufficient condition for a 

graph to be traceable by using Wiener index. 

Theorem 1.1. [9]. Let G be a connected graph of order n   4. If 

 
( 5)(

 
2)

2
G

n n
W

 
  then G is traceable, 

unless

1 3 1 2 1 2 4 1( 2 )  or  (3 ) or 6nG K K K K K K K K     . 

 
In this paper, we combine the ideas in [9] and [6] to present 

the following sufficient conditions in terms of the Wiener 

index for a graph to be Hamiltonian or Hamilton-connected. 

Theorem 1.2. Let G be a connected graph of order n  4. If 
2 6

( )
2

n n
W G

 
  then G is Hamiltonian Connected 

unless 
2 1 3 3 1( ) or K (3 )nG K K K K    

Theorem 1.3. Let G = (X, Y; E), where X = {x1, x2,…, 

xn},Y = {y1,y2,…,yn} and n≥ 2 be a connected bipartite 

graph. If W (G) ≤ 3n
2

 - 2n + 2; then G is Hamiltonian, 

unless G = P4, a path having four vertices and three edges. 

Theorem 1.4. Let G be a 2-connected graph of order n ≥ 

12. If

2 3 13
( )

2

n n
W G

 
  then G is Hamiltonian, unless 

2 1  4(( )   2     ).nG K K K     

Theorem1.5. Let G be a k-connected graph of order n. If 

( 1) ( 1)( 1) 1
( )

2

n n K n k
W G

     
  then G is 

Hamiltonian. 

II    Preliminary Results 

Corollary 2.1. Let G be a graph of order n  3 with degree 

sequence 
1 2 ... .nd d d    If 

,
2

k n k

n
d k d n k      then G is Hamiltonian. 

Corollary 2.2. Let G be a graph of order 3n   with degree 

sequence 
1 2 ... .nd d d   If 
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12 ,  d 1,
2

k n k

n
k k d n k         then G is 

Hamilton-connected. 

Corollary 2.3. Let G = (X, Y ; E) be a bipartite graph such 

that   

 

1 2 1 2

1 2

1 2

{ , ,..., } , Y={ , ,..., } n 2,

 and d ( ) d ( ) ... d ( ),

d ( ) d ( ) ... d ( ). 

If d ( )

d ( ) 1,

n n

G G G n

G G G n

G k

G n k

X x x x y y y

x x x

y y y

x k n

y n k

 

  

  

 

   

 

then G is Hamiltonian. 
Corollary 2.4. [3] Let G be a 3-connected graph of order 

   18. If   - 3,2 9n e G C n    

then G is Hamiltonian or 
3 1 6(   3   .( ) )nG K K K     

Corollary 2.5. [3] Let G be a k-connected graph of order n. If 

      , 2 1 - 1 2 1- /e G C n k n k   then G is 

Hamiltonian. 

Note that Corollary 2.1 is Corollary 3 on Page 208 in [1], 

Corollary 2:2 is Theorem 12 on Page 218 in [1], Corollary 

2.3 is Corollary 5 on Page 210 in [1], and Corollary’s 2:4 

and 2:5 can be found in [3]. 

 

III Main Results 
 
Proof of Theorem 1.2. Let G be a graph which satisfies the 

conditions in Theorem 1.1. Assume  that G is not 

Hamilton-connected. Then, from corollary 2:2, there exists an 

integer k such that 
1     - .k n kd k and d n k    

 
Therefore, 


( )

( )

( )

( )

2

1
( ) =   ( )

2

1
 ( ( ) 2( 1 ( )))

2

1
 (2( 1  ( ))

2

( 1) ( )

1
n(n - 1) - ( ( 1) ( 2 1)( ) ( 1))

2

6 ( 2)( 3)
= ( 2)( 2 ).

2 2

G

v V G

G G

v V G

G

v V G

G

v V G

W G D v

d v n d v

n d v

n n d v

k k n k n k k n

n n k k
k n k









   

  

  

       

   
   








 

2

1 1

1

1 2 3 2

1

2 1 3

6
such  that  W(G) = 

2

where  2 or (k=3 and n = 2k), 

d = =d =k,   d d 1  

and d d 1.

If  k=2, then d =2, d d =d = n - 2 

and d 1.  

Thus G = K (K K ),

which is not H

k k n k

n k n

n

n

n

n n

k

n k

n

n

 

 







 



    

   



 



 







amiltonian.

 

If k = 3 and n = 2k, then we have that n = 6. Therefore d1 = 

3, d2 = 3, d3 = 3, d4 = 5, d5 = 5 

and d6 = 5. Hence G = K3 _ (3K1), which is not 

Hamilton-connected. 

This completes the proof of Theorem 1.2. 

Proof of Theorem 1.3. Let G be a graph satisfying the 

conditions in Theorem 1.2. Suppose that G is not 

Hamiltonian. Then, from corollary 2.3, there exists an integer 

k < n such that  and(   ) )  (G k G n kd x k d y n k   . Next 

we find an upper bound for 


1 1 1 2 1,

1

1 1 1

1 1

( ).  Let N ( ) { , ,..., } be the neighbours of 

where   D ( ). 

 Then d ( , ) 1 for each N ( ),d ( , ) 2 for

each  with  2 i n,  and d ( , ) 3 for each  - N ( ).  

Thus 

     

G G s

G

G i i G G i

i G i i G

D x x z z z x

s x

x z z x x x

x x y y x





  

  







1 1 1

1

( ) d ( ) 2( 1) 3( d ( ))

                 5 2 2d ( ).

Similarly, 

we have that for each 2 i n  and each 1 j n,

     ( ) d ( ) 2( 1) 3( d ( ))

                5 2 2d ( );

     ( ) d (

G G G

G

G i G i G i

G i

G j G

D x x n n x

n x

D x x n n x

n x

D y

    

  

   

    

  

 ) 2( 1) 3( d ( ))

                 5 2 2d ( )

j G j

G j

y n n y

n y

   

  

 
Therefore, 
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
( )

2

1

2 2 2

2 2 2

2

1
( ) =   ( )

2

1
           10n 4 2 ( ( ) ( ))

2

1
           (10n 4 2( ( ( )) 2 ( ) ))

2

1
          =  (10n 4 2(( k ( ) ( ) ))

2

1
           =  (10n 4 2( (k

2

G

v V G

n

G i G i

i

W G D v

n d x d y

n k n k k n k n

n n k n n k kn

n





 
    

 

       

      

 





2

2 2

2

2

2 ( )))

          3n 2 2 ( ) ))

          3n 2 2 1 1

          3n 2 2.

k n k

n k n k n

n

n

 

    

    

  

 

From   2   3  2  2,  1      ,W G n n k n     we have that 

k = 1, n - k = 1, dG(x1) = 1, dG(x2) = 2, 

dG(y1) = 1 and dG(y2) = 2. Thus G = P4, this  is not 
Hamiltonian.  
This completes the proof of Theorem 1.3. 
Proof of Theorem 1.4. Let G be a graph satisfying the 

conditions in Theorem 1.3. Note that if G  
2

2 1 4

3 14
((2 ) ),  then ( )= .

2
n

n n
K K K W G

 
   

Assume that G is not Hamiltonian and G is not  

 

2 1 4((2 ) )nK K K   . Then, from corollary 2:4,  

we have that     2, .2 3e G C n   So we have, 


( )

( )

( )

( )

1
( ) =   ( )

2

1
           ( ( ) 2( 1 ( )))

2

1
           =  (2( 1  ( ))

2

1
          ( 1) ( )

2

           = n(n - 1) - e( )

          n(n - 1) ( 2,2) 3 

         

G

v V G

G G

v V G

G

v V G

G

v V G

W G D V

d V n d V

n d V

n n d V

G

C n









   

 

  

   









2 3 12
  = ,

2

n n 

 

This is the contradiction to the assumption  

This completes the proof of Theorem 1.4. 

 
Proof of Theorem 1.5. Let G be a graph satisfying the 

conditions in Theorem 1:4. Suppose that G is not 

Hamiltonian. Then, from corollary 2.5, we have that 

      ,  2  -   1 / -  1 2.e G C n k n k    

Therefore we consider, 


( )

( )

( )

( )

1
( ) =   ( )

2

1
           ( ( ) 2( 1 ( )))

2

1
          =  (2( 1)  ( ))

2

1
         ( 1) ( )

2

          = n(n - 1) - e( )

         n(n - 1) ( , 2) ( 1)( 1) / 2

 

G

v V G

G G

v V G

G

v V G

G

v V G

W G D v

d v n d v

n d v

n n d v

G

C n k n k









   

 

  

     









( 1) ( 1)( 1)
         = ,

2

n n k n k    

 

This is the contradiction to the assumption  

This completes the proof of Theorem 1.5. 
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