
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 6, June 2015

2123

ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

Abstract— Multipath TCP is adopted by IETF to support use

of multiple available paths for data transfer over single

connection that was not supported by TCP. It is extension of

TCP with multi-homing feature which tries to solve problem of

utilizing multiple available NICs for providing higher resiliency

and/or higher bandwidth. As multipath TCP uses more than

one path for data transfer, an efficient multipath scheduler is

required at sender side to distribute data efficiently over

different paths in order to utilize network resources efficiently

and to gain high performance. The main objective of scheduler

is to utilize all available paths and select the best path over

which data packet should be sent.

In this paper we observe existing schedulers and its

functionality. We focus on default scheduler provided with

Linux kernel implementation and cover problems associated

with it. Here we propose a scheduler to obtain higher

performance in MPI applications on HPC environment. We

have designed this algorithm for MPI application running on

MPI cluster. Our analysis shows that this algorithm will

improve the performance with MPTCP compared to the default

scheduler.

Index Terms — TCP, Scheduler, Performance, Default

Scheduler, Round-Robin Scheduler

I. INTRODUCTION

 Today nearly all computing devices have multiple

network interfaces: mobile phones with Wi-Fi and 3G,

laptops with Wi-Fi and Ethernet and servers too are equipped

with one or more interfaces. TCP is the most common

protocol being used today for Internet application but it does

not support multi-homing. To utilize all available paths

between communicating entities multipath transport protocol

is required. The Internet Engineering Task Force (IETF) has

adopted Multipath TCP as an extended form of TCP with the

support of multi-homing feature.

MPTCP [1, 2] is multipath byte stream protocol which

provides reliable and ordered delivery of messages (same as

TCP) but it also supports use of all available paths for

transferring data among communicating hosts over single

connection. MPTCP supports use of multiple IP addresses

per one pair of hosts. MPTCP is backwards compatible with

applications that are only TCP aware, but has unique features

such as traffic routing, network addressing, and connection

Manuscript received June, 2015.

 Popat Khushi J., M.E student Computer Engineering (IT Systems and

Network Security), SVIT, Vasad, Gujarat, India.

Jigar A. Raval, I/C Computer Center, Physical Research Laboratory,

Ahmedabad, India.

Samuel Johnson, Scientist / Engineer - SC, Physical Research

Laboratory, Ahmedabad, India.

Bhavesh Patel, Assistant Professor, SVIT, Vasad, Gujarat, India.

direction. Today it is being mostly used in datacenters and in

wireless networks with the goal of utilization of all available

network resources and providing high performance [12, 13, 14].

Linux kernel implementation of MPTCP (on 2.6.x and

above) is also available for use in testing, research and in

production. Apple iPhones and iPods also have support of

MPTCP [9].

One common thing with multipath transport protocols is

that sender needs to decide how to distribute data over all

available paths. MPTCP congestion control scheme [5] restrict

use of congested paths for data transfer but do not schedule

data over efficient path. MPTCP congestion control schemes

do not fulfill the need of selection of efficient path for data

transfer, for that a scheduler is required. Scheduler decides

how to distribute data efficiently over multiple available

paths. It is what selects the best path among all available

paths based on different path characteristics and sends data

over them. Scheduler must be capable enough to deal with

heterogeneous and dynamically changing characteristics of

paths as well as corresponding congestion situation of them.

MPTCP is adopted with the goals of improving

performance by using multiple disjoint paths simultaneously

for data transfer on single connection, for better utilization of

network resources and to improve network capacity. Here

MPTCP scheduler needs to deal with paths with various

network constraints. So the scheduler, which distributes

packets over dissimilar paths, is an important design

constraint for efficient performance of MPTCP. The

scheduler for MPTCP must take care about different path

characteristics such as RTT, delays, buffer size, etc.

In the world of High Performance Computing Clusters [4],

MPI [3] (Message Passing Interface) is the de facto standard

for achieving communication between various nodes present

in the cluster. The goal of MPI is to provide an effective and

portable environment where developers can easily build

message passing programs for HPC. MPI supports various

transport protocols over Ethernet (e.g., TCP, iWARP, UDP,

raw Ethernet frames, etc.), shared memory and InfiniBand.

The way most HPC are implemented today, they have a

primary high bandwidth and low latency network for data

communication (usually Infiniband) and a secondary network

for management, backup, or fall back purposes. In most

cases, it is the network that causes bottleneck for the jobs

running on HPC, as a result, networking technologies used in

HPCs are constantly evolving and are so advanced, that they

are almost exclusively only used in HPC environment.

In this paper, we study default MPTCP scheduler which is

part of the Linux Kernel Implementation of MPTCP and

address problems and limitations associated with it. To

overcome problems associated with default scheduler, we

proposed a scheduler based on queue length at subflows and

An Efficient Scheduling Scheme of Multipath

TCP for MPI

Popat Khushi J., Jigar A. Raval, Samuel Johnson, Bhavesh Patel

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 6, June 2015

2124

ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

RTT of subflows. The scheduler is designed by keeping in

mind about HPC cluster environment and its network

requirements. Here we have covered expected outcomes of

this proposed algorithm with MPI application. Our analysis

shows that it will improve the performance of MPTCP with

MPI with compared to default scheduler of MPTCP Linux

kernel.

II. BACKGROUND STUDY

A. Multipath TCP

MPTCP [1, 2] is an extension of TCP which supports use of

multiple available paths for data transfer as well as provides

higher resiliency in comparison of TCP. It provides reliable,

connection oriented data transfer same as TCP. It follows

three-way handshake process same as TCP for connection

establishment with MP_CAPABLE option with each packet.

Further addition of subflow on this connection can be done

by three way handshake process with MP_JOIN option with

TCP connection establishment packets. MPTCP supports two

kind of data sequence numbering. One 64-bit data sequence

number at connection level and another 32-bit data sequence

number at subflow level. MPTCP uses coupled congestion
control scheme for congestion control which work similar to

TCP congestion control but increment and decrement in size

of window will be different.

MPTCP need scheduling which was not needed in TCP as

it does not support multiple paths for single connection. Next

section covers scheduling and its needs as well as different

scheduling technique.

B. Multipath TCP Scheduling

MPTCP [1, 2] is multipath transport protocol which

transmits data using multiple available paths. MPTCP

congestion control scheme restricts use of congested paths

for data transfer but do not schedule data over efficient path.

MPTCP congestion control schemes do not fulfill the needs

of selection of efficient path for data transfer, for that

scheduler is required. Schedulers decide how to distribute

data over multiple available paths. It selects the best path

among available paths based on different path characteristics

and sends data over the path.

Whenever an MPTCP sender wants to transmit data, the

sender desires to make 3 decisions [7].

 First which subflow(s) are available to send data? This

decision is made by the MPTCP congestion control

scheme which preserves a per-subflow cwnd. The

subflows with available cwnd are available for

transmitting data.

 Second, if several subflows have available cwnd, a

scheduler selects subflow among them to send data.

 Third, after selecting a subflow, the scheduler resolves

how much data should be sent on that subflow. The

third decision concerns the granularity of the

allocation.

Figure 1 Place of Scheduling locgic in MPTCP stack

Above Figure 1 shows architecture of Multipath TCP with

MPI and role of scheduler. It shows that scheduler distributes

data at MPTCP level on different TCP subflows. Scheduler

has access of all subflows’ congestion control attributes, RTT

estimation etc.

As the scheduler is responsible for path selection for

distribution of data among them, it might be possible that by

selection of wrong scheduler may lead to degradation of

performance instead of higher performance. Wrong

scheduling choices might initiate head-of-line blocking or

receive-window limitation, especially when paths are

heterogeneous. In such a scenario, the user will scrutinize

high delays and lower goodput for its application, resulting in

poor user experience. Thus, the schedulers have a

considerable impact on the performance of Multipath TCP [6].

C. Existing Scheduler

Linux Kernel implementation of MPTCP [9] provides

choice between two different schedulers. A Default scheduler

and a Round-Robin scheduler.

1) Default Scheduler

In the Linux kernel implementation of Multipath

TCP, the default scheduler always chooses the subflow

with the smallest round-trip-time to send data [8]. Default

scheduler checks for RTT of each path and selects path

with smallest RTT until congestion window is available
after that it will pass data on path with second smallest

RTT value. Sending data over the subflow with the

smallest round-trip-time is not adequate to attain good

performance on memory constrained devices that make

use of a small receiving window [9].

It only considers RTT to select path while it is

necessary to take care about congestion on path, receiver

buffer size, no of packets waiting at subflow level etc to

efficiently schedule data in each time.

2) Round-Robin Scheduler

Round-Robin Scheduler schedules data over all
available subflows in round-robin fashion without

taking care about any of path characteristics. As a result

it will perform poor in some situations and do not take

advantage of heterogeneous network and path

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 6, June 2015

2125

ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

characteristics [9]. However, in case of bulk data

transmission, the scheduling is not really round-robin,

since the application is able to fill the congestion

window of all subflows and then packets are scheduled

as soon as space is again available in each subflow’s

congestion window.
When paths have significant delay difference round

robin will not efficiently utilize paths because it always

tries to equally distribute data among all available paths.

3) Other Existing Solutions

One Delay aware packet scheduling approach is

proposed in “DAPS: Intelligent Delay-Aware Packet

Scheduling For Multipath Transport [10]”. This scheduler

aims to reduce the receiver’s buffer blocking time taken

as a main parameter to improve the Quality of Service

(QoS) in wireless environments. In this paper [10],

authors developed a model for maximum blocking time

because of multipath delay imbalance i.e. to decrease
amount of time for which packets need to wait in

receiver’s buffer for ordered delivery and validated this

model with ns-2 simulations. Authors found an

approach to match the paths asymmetry and avoid

buffer blocking. Authors have implemented and

evaluated DAPS in ns-2, and more adapted the

scheduling of CMT-SCTP that selects packets to be

conveyed over each paths based on their RTT values, in

order to support ordered reception. This scheduler takes

two paths with different delays and assigns list of

sequence numbers to paths on which packets to be
transmitted or sent. It is implemented for CMT-SCTP

protocol not for MPTCP. For this scheduler authors

have considered that both paths have large delay

difference as well as cwnd value is stable which is not

true for all situations [8].

Another scheduler is proposed in “A Scheduler for

Multipath TCP [7]” which tries to approximate the

available capacity on each subflow and calculate the

number of bytes transmitted over each subflow. This

facilitates the scheduler to identify when the subflow is

sending too much data and select the other subflow at

that time. The scheduler proposed in this paper is
implemented in the Linux kernel, but the source code

does not seem to have been released by the authors. The

performance of the scheduler is evaluated by

considering a simulation scenario with very long file

transfers in a network with a very small size buffer. It

does not represent a real use case for Multipath TCP.

III. PROPOSED SCHEDULING SCHEME

Here we proposed a scheduling scheme which is based on

default scheduler of MPTCP provided with Linux kernel

implementation of MPTCP. Below Figure 2 shows us flow

chart of proposed scheduler. As shown in figure scheduler go

through each available subflow and chooses the best subflow

from them based on the availability, congestion situation and

RTT. Here scheduler goes through each subflow and chooses

the best path among them.

First it checks whether packet comes for retransmission or

comes for first time. If packet comes for retransmission and it

was earlier transmitted on same subflow then this path will

not be selected for same packet and scheduler checks

availability of another subflow. If it is first time transmission

or not before transmitted on same subflow then another

condition will be checked. Next scheduler checks the

congestion situation if number of transmitted packets whose

acknowledgments yet not received or are on the way are more

than the size of congestion window then that path will not be

selected because it is already have more packets. Next if

congestion window is available and it is more than in flight

packets then it will check for the space in its buffer. If number

of packets waiting for transmission on that path are more than

capacity or space then this path will be rejected. After that

next condition will be checked if space is available at sending

buffer. Now scheduler will check how many packets are

waiting in queue at particular path for transmission and

calculate the total processing time. Here we have taken one

variable min_proc_time_to_peer which is initialized with

maximum value. For the first path if its processing time is

less than this variable’s value then this path will be selected.

If two paths will have same processing time than based on

RTT value packet will be transmitted on the subflow with

lower RTT value.

This whole process will be repeated for all available

subflow and best path will be selected from them.

Figure 2 Proposed Scheduling Flow chart

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 6, June 2015

2126

ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

IV. EXPECTED OUTCOMES OF PROPOSED WORK

We have designed this algorithm by keeping in mind to

increase performance of MPTCP with different path

characteristics and our theoretical analysis shows that our

work will improve the performance of MPTCP with MPI for

data transfer.
V. CONCLUSION

In this paper, we proposed a scheduler which is based on

packets waiting at subflow level (queue size), RTT value and

congestion situation of subflow. This scheduler is designed

by taking care about requirements of MPI applications

running on HPC cluster. The performance of this scheduler is

measured by running file transfer application of MPI which

transfers file from master to compute node and its
performance is compared with performance of default

scheduler provided with Linux Kernel of MPTCP.

From this we can conclude that default scheduler is not

efficient in all situations such as subflows with different

delay, buffer size and path capacity. Therefore an efficient

scheduler is required which not only based on RTT but also

consider other network parameters for path selection. As per

our assumption and analysis, our proposed work performs

better than default scheduler and considers congestion

situation, RTT and packets waiting at subflow for path

selection.

ACKNOWLEDGMENT

We would like to thank Physical Research Laboratory

(PRL), Navarangpura, Ahmedabad and members of

Computer centre of PRL for providing us resources as well as

support for carrying out these experiments.

 REFERENCES

[1] Ford, A., Raiciu, C., Handley, M. and Bonaventure, O. TCP extensions

for multipath operation with multiple addresses. RFC6824, 2014;

http://www.rfceditor.org/rfc/rfc6824.txt.

[2] Sebastiean Barre, Christoph Passch, Olivier Bonaventure - “Multipath

TCP: From Theory To Practice,” in Proceedings of the 10th

International IFIP Networking Conference, Valencia/Spain, May 2011,

pp. 444–457, ISBN 978-3-642-20756-3

[3] Blaise Barney, Lawrence Livermore National Laboratory, “Message

Passing Interface(MPI)”, https://computing.llnl.gov/tutorials/mpi/

[4] HPC Cluster networks, High Performance Computing –WIKI [online]

http://en.community.dell.com/techcenter/high-performance-computin

g/w/wiki/hpc-cluster-networks

[5] Raiciu C., Handly M., Wischik M.. RFC 6356: Coupled Congestion

Control for Multipath Transport Protocols. RFC 6356 (October 2011)

[6] Behnaz Arzani, Alexander Gurney, Shuotian Cheng, Roch Guerin and

Boon Thau Loo –“Impact of Path Characteristics and Scheduling

Policies on MPTCP Performance,” 2014 28th International Conference

on Advanced Information Networking and Applications Workshops

[7] Fan Yang, Paul Amer, Nasif Ekiz – “A Scheduler for Multipath TCP,”

IEEE 2013

[8] Bonaventure Olivier - “Why is the Multipath TCP scheduler so

important” [online]

http://blog.multipathtcp.org/blog/html/2014/03/30/why_is_the_multip

ath_tcp_scheduler_so_important.html

[9] “Multipath TCP-Linux Kernel implementation” [online]

http://www.multipath-tcp.org/

[10] Nicolas Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R.

Boreli, “DAPS: Intelligent Delay-Aware Packet Scheduling For

Multipath Transport,” presented at the ICCC, 2014

[11] Amanpreet Singh, Carmelita Goerg,Andreas Timm-Giel, Michael

Scharf –“Performance Comparison of Scheduling Algorithms for

Multipath Transfer,” Globecom 2012 - Next Generation Networking

and Internet Symposium, IEEE

[12] Raiciu Costin, Pluntke Christopher, Barre Sebastien, Greenhalgh

Adam, Wischik Damon, Handley Mark. Data Center Networking with

Multipath TCP. Hotnets-10 Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Network, October 2010

[13] Raiciu C., Barre S., Pluntke C., Greenhalgh A.,Wischik D. and

Handley M. Improving datacenter performance and robustness with

Multipath TCP. ACM SIGCOMM Computer Communication Review

41, 4 (2011), 266–277.

[14] Yung-Chih Chen, Yeon-sup Lim, Richard J. Gibbens, Erich M.

Nahum, Ramin Khalili, Don Towsley. A Measurement-based Study of

Multipath TCP Performance over Wireless Networks. IMC’13

(October 23–25, 2013), Barcelona, Spain.

