
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 9, September 2015

3159
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

BIT Sorting: New Technique for Sorting

Hemkumar D

GITAM University, Bengaluru

Abstract-- In field of computer science, there are

various applications of sorting algorithm. Sorting is an

operation to arrange the elements of a data structure

in some logical order Sorting is data arranged in a

particular fashion either in ascending or descending

form. As we know that, there existing many sorting

algorithms with different complexities. In this study, I

am proposing a new sorting algorithm (BIT Sorting) and

compared with existing algorithms in terms of

complexities. Results obtained after implementation

are described in a graphical form with an objective to

compare the efficiency of the proposed algorithm with

standard algorithm method.

Keywords: Sorting, Complexity analysis

1. INTRODUCTION

In computer science, a sorting algorithm is an

algorithm that puts numbers or elements of a
list in a certain order. The most-used orders

are numerical order and lexicographical order.

Efficient sorting is important for optimizing
the use of other algorithms (such as search and

merge algorithms) that require sorted lists to

work correctly; it is also often useful for

suitable data and for producing human-
readable output. More formally, the output

must satisfy two constraints: first constraint is

that output is in non-decreasing order (each
element is no smaller than the previous

element according to the desired total order).

Second constraint is that output is a
permutation, or reordering, of the input. Since

the dawn of computing, the sorting problem

has a great deal of research, perhaps due to the

complexity of solving it efficiently despite its
simple, familiar statement. Sorting algorithms

are prevalent in introductory computer science

classes, where the abundance of algorithms for
the problem provides a gentle introduction to a

variety of core algorithm concepts, such as big

O notation, divide and conquer algorithms,

data structures, randomized algorithms, best,
worst and average case analysis, time-space

tradeoffs, and lower bounds. The ultimate goal

of sorting techniques is reduction in cost and
complexity of the algorithm. In this paper, I

propose a new sorting technique i.e., BIT

Sorting derive its algorithm and compare it

with well-known standard techniques. This
sort is more efficient than bubble sort and it

also proves to be efficient than insertion sort.

All the analysis count and graphs have been
provided for the researchers to check its

efficiency.

In order to find which algorithm is better than
other algorithms, to compare the complexity of

these algorithms need to be calculated. There

are two types of complexity. They are:

i) Space Complexity: Total amount of memory

requires performing the algorithm.
ii) Time Complexity: Total amount of time

requires performing the algorithm.

Now-a-days, when we deal about the
complexity, we concentrate more on time

complexity compared to space complexity.

One way of comparing is based on the exact
running time of all algorithms but it depends

upon processor and language used. Even if the

language and processor are same, calculating

the exact time is more difficult as it would
require CPU utilization may be different. The

time complexity is dependent on the number

of input elements. So, it is expressed in term of
number of input size or element size. Two

algorithms can be compared by using the rate

of growth function f(n) of the algorithms
expressed in term of number of input n. The

growth function of algorithm with lesser rate is

better than the other algorithm. If the rate of

growth function is high when the numbers of
input size or element size increase the number

of operation also increase.

1.1 APPLICATIONS OF SORTING

Two important usage of sorting in terms of

1) Searching

2) Matching entries in lists.

Sorting also finds solution in various

applications in order to solve many other more

complex problems from areas such as

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 9, September 2015

3160
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

optimization, graph theory and job scheduling.

Next section, we have discussed some existing
algorithms a like selection sort, Bubble sort,

quick sort, merge sort used for sorting the

elements of an array. In this paper, we have
considered proper utilization of memory and

also the simplicity of the algorithm. By taking

these two factors, we compared our proposed
algorithm with existing algorithms.

2. EXISTING SORTING TECHNIQUES

There are various many sorting algorithms.
Some of the common sorting algorithms are

given here.

Selection sort: The idea of selection sort is

simple; we repeatedly find out the next largest

element in the array and move it to its final
position in the array (sorted). Assume that we

wish to sort the array in increasing order, i.e.

the smallest number or element at the

beginning of the array and the largest element
or number at the end. We begin by selecting

the largest element or number and moving it to

the highest index position. We can do this by
swapping the element or number at the highest

index and the largest element or number. We

then reduce the size of the array by one

element and repeat the process on the sub
array. The process stops when the size of the

array becomes 1

Bubble sort: The main idea of bubble sort is

similar to the idea of selection sort: on each

step through the algorithm, we place at least
one item in its proper location. The differences

between bubble sort and selection sort lie in

how many times data is exchange or swap and

when the algorithm terminates. Bubble sort
performs more swaps in each pass or step, in

the hopes that it will finish sorting the list

sooner than selection sort will. Like selection
sort, bubble sort works by comparing two

items in the list at a time. Unlike selection sort,

bubble sort will always compare two

consecutive items in the list of an array, and
swap or exchange them if they are out of

order. If we assume that we start at the

beginning of the list, this means that at each
pass or step through the algorithm, the largest

remaining item in the list will be placed at its

proper location in the list of an array.

Quick sort: Quick sort is a very fast sorting

algorithm. The algorithm itself is a bit tricky to

understand, but it works very well. The basic
idea of quick sort is that, choose random an

element in the list of an array as a “pivot”

element. Then, go through all of the elements
in the list, swap items that are smaller than the

pivot that are placed on the right side of the

pivot , items that are larger than the pivot that

are placed on the left side of the pivot. Once
you’ve done all possible swaps, move the

pivot to wherever it belongs in the list of an

array. Now we can ignore the pivot, since it’s
in position, and repeat the process for the two

halves of the list (on each side of the pivot).

We repeat this until all of the items or
elements in the list have been sorted. Quick

sort is an example of a divide and conquer

algorithm. Quick sort sorts a list effectively by

dividing the list into smaller and smaller lists,
and sorting the smaller lists in turn faster.

Merge sort: Merge sort is a best algorithm for

specific application, because it’s the “sort that

sorts itself”. This means that merge sort

algorithm requires very few comparisons and
swaps; it instead relies on a “divide and

conquer” strategy that’s slightly different from

the one that quick sort uses. Merge sort starts
by dividing the list to be sorted in half. Then, it

divides each of these halves in half. The

algorithm repeats until all of these “sublists”
have exactly one element in them. At that

point, each sublist of on array is sorted. In the

next step of the algorithm, the sublists are

gradually merged back together , until we get
our sorted list of an array.

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 9, September 2015

3161
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

3. BIT SORTING

Consider list of elements that are stored in an array

7 1 11 14 13 9 5 6

Convert all elements into binary form

0111 0001 1011 1110 1101 1001 0101 0110

Find elements whose first leftmost bit is 1

0111 0001 1011 1110 1101 1001 0101 0110

Compare consequence bits to all selected elements until get single BIT sequence number

0111 0001 1011 1110 1101 1001 0101 0110

0111 0001 1011 1110 1101 1001 0101 0110

Swap selected BIT sequence with last element of an array, If selected BIT sequence is last element of

an array then no need to exchange. So that next iteration only checks remaining bits of an element.

0111 0001 1011 0110 1101 1001 0101 1110

Repeat step2, step3 and step4 (proposed algorithm) until all elements are sorted

2

nd
 Iteration:

0111 0001 1011 0110 1101 1001 0101 1110

0111 0001 1011 0110 1101 1001 0101 1110

0111 0001 1011 0110 0101 1001 1101 1110

3

rd
 Iteration:

0111 0001 1011 0110 0101 1001 1101 1110

0111 0001 1011 0110 0101 1001 1101 1110

0111 0001 1011 0110 0101 1001 1101 1110

0111 0001 1001 0110 0101 1011 1101 1110

4

th
 Iteration:

0111 0001 1001 0110 0101 1011 1101 1110

0111 0001 0101 0110 1001 1011 1101 1110

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 9, September 2015

3162
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

5
th

 iteration:

0111 0001 0101 0110 1001 1011 1101 1110

0111 0001 0101 0110 1001 1011 1101 1110

0111 0001 0101 0110 1001 1011 1101 1110

0111 0001 0101 0110 1001 1011 1101 1110

0110 0001 0101 0111 1001 1011 1101 1110

6

th
 Iteration:

0110 0001 0101 0111 1001 1011 1101 1110

0110 0001 0101 0111 1001 1011 1101 1110

0110 0001 0101 0111 1001 1011 1101 1110

0101 0001 0110 0111 1001 1011 1101 1110

7
th

 Iteration:

0101 0001 0110 0111 1001 1011 1101 1110

0101 0001 0110 0111 1001 1011 1101 1110

0001 0101 0110 0111 1001 1011 1101 1110

Sorted array is

0001 0101 0110 0111 1001 1011 1101 1110

Convert sorted BIT sequence elements into decimal number

1 5 6 7 9 11 13 14

Proposed Algorithm

List of elements that are stored in array
begin

Step 1: convert all elements into binary form but converted elements are in same BIT

sequence form.
Step 2: find elements whose first leftmost bit is 1

Step 3: repeat step 2 to all selected elements until get single BIT sequence number

Step 4: swap selected BIT sequence with last element of an array

Step 5: repeat step2, step3 and step4 until all elements are sorted
Step 6: convert sorted BIT sequence elements into decimal number

End

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 9, September 2015

3163
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

4. Results

The behaviour of the BIT Sorting algorithm in

the best case will be O(n), depicting that the
elements in the list are in sorted form.

Similarly the average case of the running cost

will be O(n) depending upon the number of
elements in the list. There lies a significant

difference between the average case running

cost of BIT Sort and the other algorithms that

cannot be overlooked. The results are showed
in Figure 1. i.e., analysis of BIT Sorting in

terms of number of comparison and number of

input elements. The experiment was performed
using the linear data structure array and

datasets is generated using the C in-built

function called rand(). This BIT Sorting
algorithm is compared with the common

existing algorithm like Bubble sort, Insertion

sort Quick sort, Merge sort. The complexity of
the algorithm depends upon the number of

comparisons of respective algorithms. Based

on this analysis (Figure 1), we conclude that

Bit sorting is better efficiency compared to
bubble sort and selection sort.

Figure 1: analysis of BIT Sorting in terms of number of comparison and number of

input elements

4. Conclusion

The above figure showed that, number of

comparisons with the number of inputs of

different sorting. It has been found that

BIT sorting algorithm is better than the

existing sorting algorithm (bubble sort and

selection sort) as the rate of growth is

much slower than the other algorithms. By

analysing the graph above, it can be easily

prove that BIT Sort is clearly efficient than

well-known standard sorts like Bubble sort

and Selection sort. It can also be prove

from the graph that the rate of growth of

BIT sort over large input sizes is very

steady as compared to Bubble Sort and

Selection Sort.

References

[1]. Yedidyah Langsam, Moshe J.

Augenstein, Aron M. Tenenbaum, Data

Structures using C and C++, Pearson

Prentice Hall, 2007,pp 355-358.

[2] Seymour Lipschutz. Theory and

Problems of Data Structures, Schaum’s

Outline Series: International Edition,

McGraw- Hill, 1986. ISBN 0-07-099130-

8., pp. 322–323, of Section 9.3: Insertion

Sort.

[3] Robert Sedgewick, Algorithms,

Addison-Wesley 1983 (chapter 8 p 95)

[4] S.K. Srivastava, Deepali Srivastava,

Data Structures through C in depth, BPB

publication, 2011, pp 421- 424.

[5] T.H.Cormen , C.E.Leiserson,

R.L.Rivest, C Stein, Introduction to

Algorithms, 2nd ed.,PHI,pp 145-148.

0

5000

10000

15000

20000

25000

30000

35000

N
u

m
b

er
 o

f
C

o
m

p
ar

is
io

n
s

Number of Elements

Bubble sort

Selection sort

Quick sort

Merge sort

BIT sort

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 9, September 2015

3164
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

[6] S.K. Srivastava, Deepali Srivastava,

Data Structures through C in depth, BPB

publication, 2011, pp 473-476.

[7] Owen Astrachan. Bubble Sort: An

Archaeological Algorithmic Analysis.

SIGCSE 2003 Hannan Akhtar. Available

at:

http://www.cs.duke.edu/~ola/papers/bubbl

e.pdf.

[8] Ellis Horowitz, Sartaj Sahni,

Sanguthevar Rajasekaran, Fundamentals

of Computer Algorithms, Uiversities Press,

2009, pp 159-167.

[9] Liu Jing, An Introduction to computer

algorithms –techniques of design and

analysis[M]. Beijing: science press 2003

[10] deng Xiangyang, wan tingtin Design

and analysis of algorithms[m] .Beijing :

metallurgical Industry press , 2006.

[11] Mriganka Sarmah , Heisnam Rohen

Singh, The Rapid Sort International

Journal of Advances in Computer Science

& Its Applications – IJCSIA Volume 4:

Issue 3 September,2014

http://www.cs.duke.edu/~ola/papers/bubble.pdf
http://www.cs.duke.edu/~ola/papers/bubble.pdf

