PETRINET BASED PROCESS MODEL EVALUATION

CH.GURUNATHAM, B.PRATHIBHA, D.LAKSHMI HANISHA, G.LAVANYA

Abstract— Process is a set of related actions and transactions to achieve a certain object. Process model is a process of designing and communicating the current or intended future state of a software process. It is used for viewing systems in multiple perspectives. To compare two process models we use a graphical notation called petri net. A petri net consist of two types of nodes called places and transition. Which are used to model behavior of systems in terms of flow. Comparison of process models can reveal number of process variations in a contemporary norms for process modeling. A process model is very important to develop quality projects. So we are introducing a tool based method for calculating efficiency of process models by using petri nets. This paper consists of methodology to compare two process models and we can find out efficiency of those process models.

Index Terms— Petri nets, process models, transitions, tokens, performance, free choice net.

1. INTRODUCTION

Process model define a separate set of activities, actions, tasks, milestones, and work products that are required high-quality software. It provides root map for software engineering process. Firstly, we find the information what is present in the process model and recall measures for two models - say model 1 and model 3 - and some typical behavior -say log - when these process models measures are compared to another model - say model 2 - with respect to log.

In other words, if the exactitude and remind values for (model 1, model 2, log) and (model 2, model 3, log) are known, what can be secondary about the values for (model 1, model 3, log)? Secondly, we reason if two poocess models are correspondent then they are behaviorally same with respect to a given typical behavior. Thirdly, this paper also discusses the accomplishment of the accuracy and remind measures in the context of genetic mining, where there is a need to evaluate models in an expected manner. Moreover, in this domain the hypothesis of having example activities in terms of event log is very natural.

The remainder is organized as follows. Firstly, we describe the basic concepts of petri nets and those petri nets are defined by using a diagrammatic notation. In the design part comparison of process model can be represented by using UML notations like use case, sequence diagrams. In the implementation part we represent the modules for comparing the process models. And those models are represented as two petri nets by using bidirectional graph.

Fig 1:Petri net trajectory example

1.1. Petri net basics

A petri net is a collection of places and transitions and arcs. Here, Arcs run from a place to a transition. Input places consist of incoming arcs, the places to which arcs run from a transition are called the output places of the transition.

Graphically, places hold an isolated quantity of signs called tokens. Any allocation of tokens in excess of the places will represent a configuration of the net called a marking. In an abstract sense relating to a Petri net diagram, a transition of a Petri net may fire whenever there are sufficient tokens at the start of all input arcs; when it fires, it consume these tokens, and places tokens at the end of all output arcs. A firing is atomic, i.e., a single non-interruptible step.

Execution of Petri nets is nondeterministic: when multiple transitions are enabled at the same time, any one of them may fire. If a transition is enabled, it may fire, but it doesn't have to.

Since firing is nondeterministic, and multiple tokens may be present anywhere in the net, Petri nets are well suited for modeling the concurrent behavior of distributed systems.

2. DESIGNING

2.1. Use Case Diagram 1:

Here we are taking Service Discovery as an actor. By using Generalization relationship it is connected to several use cases. There are four use Cases like Accept Requirements as UML, Build Query, Search Service Registration and Communal based Ranked Service Section QOS based Service Ranking.
2.2. Use Case Diagram 2:
Here we are considering “Accept Requirements as UML” as an actor. It collects input constraints for both structural model and behavioral model. By combining those two constraints it finds the soft constraint.

2.3. Use Case Diagram 3:
Here Build Query is an actor. It builds the search query based on both structural and behavioral constraints.

3. IMPLEMENTATION:
To implement our paper we need to take two different process models. These two process models should be converted into Petri nets. These Petri nets must have places and transitions. We need to connect these places and transitions with arcs.

The above Petri net is 8 places and 6 transitions and having 4 timed transitions. Basically, it is a process model. By using EPC’s it is converted into a Petri net. Tokens are present at p0, p3, and p7. These places and transitions are connected by arcs.

By using structural analysis and behavioral profiles we are going to measure process consistency. Behavioral profiles consist of model status, general stochastic results and relations. Structural analysis consist of connection analysis and simulation. Final phase consists of comparison results.

3.1. Modules:
1. Model Status
By using this module we are going to know about process model status. It is used for checking whether the Petri net having the properties like state machine, marked graph, free choice net, extended free choice net and simple net.
It should satisfy any of those 5 properties. If it satisfies we consider it a valid model

2. General Stochastic Results
 By using this module we are going know about the Marking values based on places and transitions. First we measure the marking based on places, after that we are using tangible transitions. Finally the marking values placed into graph. We can calculate State Space Exploration time and Steady State Distribution Time. Total Time should be calculated by using those two calculated timed formats.

3. Relations
 We are going to measure the relationships in the selected Petrinet. It should be covered by positive transition relations and positive Place relations. It automatically displays Place Transition relations. Finally we can get total analysis time.

4. Connection Analysis
 In this module we are going measure Forward connection matrix, Backward Connection matrix, Bi-direction connection matrix and Inhibition matrix to evaluate process consistency. After that it should automatically displays marking values. It also displays enabled transitions.

5. Simulation
 Simulation contains average number of tokens in the places and confidential intervals. These values are not negative. In this phase we may know the consistency of process models by using confidential intervals.

6. Comparison
 Here we are comparing two process models by using their petrinet graphs. We are taking one more Petri net.

![Fig6 : Petrinet 2](image)

We are comparing Petriunet 1 and Petrinet 2 by using their Places, Transitions and Arcs.

4. Result analysis:
 Here I have converted one process model into a petrinet. By using a graphical tool I have selected the below process model to know the status of each and every phase

![After that we can find out connection matrix for that process model by using marking methodology.](image)
Here the net is converted to positive transition relations and positive place relations by this we get the result as bonded and constraint transitions.

Here we find the connections between processes and transitions by using connection analysis.

Here we get the results from the comparison of two petrinets.

Here we get the another petrinets for comparing with previous one.

Here we get the average number of tokens and confidence intervals for above petrinets.
5. CONCLUSION:

Finally in this paper we had compare two process models by using petrinets. It is a easy method to select predefined process model or own process models. It is low cost and high performance method. We can implement this method in future by using UML diagrams, we are focusing on best process models to develop a project.

6. REFERENCES

ABOUT AUTHORS:

CH. GURUNATHAM, M.TECH, Assistant professor, Department of computer science and engineering, Andhra engineering college, Atmakur, S.P.S.R.Nellore(dt), JNTUA, Andhra Pradesh, India.

B. PRATHIBHA, Student (final year), Department of computer science and engineering, Andhra engineering college, Atmakur, S.P.S.R.Nellore(dt), JNTUA, Andhra Pradesh, India.

D. LAKSHMI HANISHA, Student (final year), Department of Electronics and communication engineering, Andhra engineering college, Atmakur, S.P.S.R.Nellore(dt), JNTUA, Andhra Pradesh, India.

G. LAVANYA, Student (final year), Department of science and engineering, Andhra engineering college, Atmakur, S.P.S.R.Nellore(dt), JNTUA, Andhra Pradesh, India.