
International Journal of Science, Engineering and Technology Research (IJSETR), Volume 5, Issue 1, January 2016 
                                                                                

387 
ISSN: 2278 – 7798                                        All Rights Reserved © 2016 IJSETR 

 

 

Abstract 

In this paper, two quadrature rules Weddle’s 

transformed rule and Clenshaw-Curtis five point rule of 

same precision five are mixed up and a quadrature rule of 

higher precision seven is obtained. An asymptotic error 

estimate of the rule has been determined and the rule is 

numerically verified with suitable examples. 
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1. Intruduction 

  Keeping the facts in mind  [3,4,5,6,9,10,11]  we 

have mixed up Weddle’s transformed rule and 

Cleanshaw-Curtis five point rule each of same precision 

five and produced a mixed quadrature of precision seven. 

A new rule of precision seven is used for evaluating an 

integral of the form,

     )1.1(.
L

dzzffI  

 Where L   is a directed line segment from the point 

 hz 0  to  hz 0  in the complex plane  and  zf  is 

analytic in certain domain   containing the line 

segment L . Lether [7] using the 

transformation  thzz  0 , where  1,1t  

transformed the integral )1.1(  to the integral  

   2.1.

1

1

0


 dtthzfh

 
 

2. Construction of mixed quadrature rule: 

 Weddle’s transformed rule  fRW  is 
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Expanding each term of eqn  1.2 using Taylor series 

about 0z  

     
       

     
 

 

 

 

 (2.2) 

 

 

 

We can write eqn  1.1  using Taylor series expansion 

about 0z  
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Cleanshaw-curtis five point rule is 
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3. Error Analysis

  

Now the error associated with Weddle’s rule 

 fRW  is 

                                                        
 

 

 

 

 

Now the error associated with Cleanshaw-Curtis 

five point rule  fRCC5  is
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Using Taylor series expansion of eq
n 
(2.1) and eq

n
  ,  

(2.4) we get, 

 

       3.3fEfRfI WW 

       4.355 fEfRfI CCCC 
 

 
Where f  is infinitely differentiable since it is 

assumed to be analytic in certain

 domain    containing the line segment L .  

Now multiplying 
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eqn  3.3 and adding,  

     fEfRfI WCCWCC 55 
       

 5.3  

        6.38110
91

1
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1
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 Calculation of  fEWCC5

 Substituting eqn  1.3  and eqn  2.3  in eqn  7.3  

       

 (3.8) 

 

From eqn  8.3 , the degree of precision of 

 fRWCC5 is seven where as degree of precision 

o  fRW  and  fRCC5 are five. 

 

 

 

 

 

 

4. Numerical Verification 

Let us approximate the value of the following 

integrals ,1I 2I  , 3I  using  fRW ,  fRCC5  
,  fRWCC5  quadrature rule 

 Where
. 

 

 
 

Table-1 (Comparison between approximate and 

exact results) 

 

Table-2 ( Comparison between approximate 

and exact results) 

 

 

From the Table-1 and Table-2 we compare the 

results as follows, 

     fEfEfE CCWWCC 55   

5. Conclusion 

From the Table-1 and Table-2 it is evident that the 

mixed quadrature rule )(5 fRWCC  of degree of 

precision seven is giving us better result than the 

constituent rules )( fRW  and )(5 fRCC each of 

degree of precision five. Our quadrature rule is 

more efficient and numerically better convergent to 

exact result. 

 

 

Exact value of 

the integrals 
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Transformed 
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Clenshaw-Curtis 

five point rule 
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Mixed 

quadrature rule 
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