Some quadrature methods for approximate evaluation of definite integrals for Complex Variables

Kishor Kumar Prusty
Department of Mathematics, Hindol College,
Khajuriakata, Dhenkanal, pin-759020 Odisha,India,
Mob: +91-9937757389

Abstract
In this paper, two quadrature rules Weddle’s transformed rule and Clenshaw-Curtis five point rule of same precision five are mixed up and a quadrature rule of higher precision seven is obtained. An asymptotic error estimate of the rule has been determined and the rule is numerically verified with suitable examples.

Keywords: Quadrature rule, Asymptotic error, Analytic function, Numerical integration, Taylor’s series.

MSC2010: 65D30,65D32

1. Introduction
Keeping the facts in mind [3,4,5,6,9,10,11] we have mixed up Weddle’s transformed rule and Clenshaw-Curtis five point rule each of same precision five and produced a mixed quadrature of precision seven. A new rule of precision seven is used for evaluating an integral of the form,

\[I(f) = \int f(z)dz. \] (1.1)

Where \(L \) is a directed line segment from the point \((z_0 - h)\) to \((z_0 + h)\) in the complex plane and \(f(z) \) is analytic in certain domain \(\Omega \) containing the line segment \(L \). Lether [7] using the transformation \(z = (z_0 + th) \), where \(t \in [-1, 1] \) transformed the integral (1.1) to the integral

\[h \int_{-1}^{1} f(z_0 + th)dt. \] (1.2)

2. Construction of mixed quadrature rule:
Weddle’s transformed rule \(R_w(f) \) is

\[I(f) \approx R_w(f) = \frac{h}{10} \left[f(z_0 - h) + f(z_0 + h) + 2f(z_0 + h/3) + 5f(z_0 - 2h/3) + 8f(z_0) \right] \] (2.1)

Expanding each term of eqn (2.1) using Taylor series about \(z_0 \)

\[f(z_0) + \frac{h^2}{3!} f''(z_0) + \frac{h^4}{5!} f^{(iv)}(z_0) + \frac{35h^6}{243 \times 6!} f^{(vi)}(z_0) + \frac{1307h^8}{10935 \times 8!} f^{(vii)}(z_0) + \ldots \]

We can write eqn (1.1) using Taylor series expansion about \(z_0 \)

\[I(f) = 2h \left[f(z_0) + \frac{h^2}{3!} f''(z_0) + \frac{h^4}{5!} f^{(iv)}(z_0) + \frac{h^6}{7!} f^{(vi)}(z_0) + \frac{h^8}{9!} f^{(vii)}(z_0) + \ldots \right] \] (2.3)

Cleanshaw-curtis five point rule is

\[I(f) \approx R_{CC5}(f) = \frac{h}{15} \left[f(z_0 + h) + f(z_0 - h) + 8f\left(z_0 + \frac{h}{\sqrt{2}} \right) + 8f\left(z_0 - \frac{h}{\sqrt{2}} \right) + 12f(z_0) \right] \] (2.4)
3. Error Analysis

Now the error associated with Weddle’s rule $R_w(f)$ is

$$E_w(f) = I(f) - R_w(f) = \frac{-4h^7}{1701 \times 6!} f^w(z_5) - \frac{184h^9}{10935 \times 8!} f^{iii}(z_0)$$ \hspace{1cm} (3.1)

Now the error associated with Clenshaw-Curtis five point rule $R_{CCS}(f)$ is

$$E_{CCS}(f) = \frac{1}{315 \times 5!} h^7 f^{w}(z_0) + \frac{1}{360 \times 7!} h^9 f^{iii}(z_0) + \ldots$$ \hspace{1cm} (3.2)

Using Taylor series expansion of eqn (2.1) and eqn (2.4) we get,

$$I(f) = R_w(f) + E_w(f)$$ \hspace{1cm} (3.3)

$$I(f) = R_{CCS}(f) + E_{CCS}(f)$$ \hspace{1cm} (3.4)

Where f is infinitely differentiable since it is assumed to be analytic in certain domain Ω containing the line segment L.

Now multiplying $\left(\frac{1}{81} \right)$ in eqn (3.4) and $\left(\frac{1}{10} \right)$ in eqn (3.3) and adding,

$$I(f) = R_{WCCS}(f) + E_{WCCS}(f)$$ \hspace{1cm} (3.5)

$$R_{WCCS}(f) = \frac{1}{91} \left[10 R_{CCS}(f) + 81 R_w(f) \right]$$ \hspace{1cm} (3.6)

$$E_{WCCS}(f) = \frac{1}{91} \left[10 E_{CCS}(f) + 81 E_w(f) \right]$$ \hspace{1cm} (3.7)

Calculation of $E_{WCCS}(f)$

Substituting eqn (3.1) and eqn (3.2) in eqn (3.7)

$$E_{WCCS}(f) = -\frac{77}{49140 \times 7!} h^9 f^{iii}(z_0)$$ \hspace{1cm} (3.8)

From eqn (3.8), the degree of precision of $R_{WCCS}(f)$ is seven where as degree of precision of $R_w(f)$ and $R_{CCS}(f)$ are five.

4. Numerical Verification

Let us approximate the value of the following integrals I_1, I_2, I_3 using $R_w(f)$, $R_{CCS}(f)$, $R_{WCCS}(f)$ quadrature rule

Where

$$I_1 = \int_{-i}^{i} e^z \, dz, \quad I_2 = \int_{-i}^{i} \cos z \, dz, \quad I_3 = \int_{-i}^{i} \cosh z \, dz$$

Table-1 (Comparison between approximate and exact results)

<table>
<thead>
<tr>
<th>Exact value of the integrals</th>
<th>Weddle’s Transformed rule $R_w(f)$</th>
<th>Clenshaw-Curtis five point rule $R_{CCS}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1 = 1.6829419</td>
<td>1.6829391</td>
<td>1.6829678776630</td>
</tr>
<tr>
<td>69615793i</td>
<td>11213524i</td>
<td>91i</td>
</tr>
<tr>
<td>I_2 = 2.3504023</td>
<td>2.3504060</td>
<td>2.3503753769314</td>
</tr>
<tr>
<td>87287603i</td>
<td>80572671i</td>
<td>79i</td>
</tr>
<tr>
<td>I_3 = 0.6543893</td>
<td>0.6543893</td>
<td>0.6543894056608</td>
</tr>
<tr>
<td>93592304i</td>
<td>92120058i</td>
<td>18i</td>
</tr>
</tbody>
</table>

Table-2 (Comparison between approximate and exact results)

| Mixed quadrature rule $R_{WCCS}(f)$ | $|E_w(f)|$ | $|E_{CCS}(f)|$ | $|E_{WCCS}(f)|$ |
|-------------------------------------|----------|--------------|----------------|
| 1.682942272 | 0.00002 | 0.00002 | 0.00000 |
| 361828i | 285 | 590 | 0.300 |
| 2.350407206 | 0.00000 | 0.00002 | 0.00000 |
| 546167i | 369 | 701 | 0.031 |
| 0.654389393 | 0.00000 | 0.00000 | 0.00000 |
| 608054i | 001 | 001 | 00000 |

From the Table-1 and Table-2 we compare the results as follows,

$$|E_{WCCS}(f)| \leq |E_w(f)| \leq |E_{CCS}(f)|$$

5. Conclusion

From the Table-1 and Table-2 it is evident that the mixed quadrature rule $R_{WCCS}(f)$ of degree of precision seven is giving us better result than the constituent rules $R_w(f)$ and $R_{CCS}(f)$ each of degree of precision five. Our quadrature rule is more efficient and numerically better convergent to exact result.
Acknowledgements

This work is supported by the funding agency (University Grant Commission), New-Delhi Grant serial No.219550 (Minor Research project)

References

