Some quadrature methods for approximate evaluation of definite integrals for Complex Variables

Kishor Kumar Prusty Department of Mathematics, Hindol College, Khajuriakata, Dhenkanal, pin-759020 Odisha,India, Mob: +91-9937757389

Abstract

In this paper, two quadrature rules Weddle's transformed rule and Clenshaw-Curtis five point rule of same precision five are mixed up and a quadrature rule of higher precision seven is obtained. An asymptotic error estimate of the rule has been determined and the rule is numerically verified with suitable examples.

Keywords: Quadrature rule, Asymptotic error, Analytic function, Numerical integration, Taylor's series. MSC2010: 65D30,65D32

1. Intruduction

Keeping the facts in mind [3,4,5,6,9,10,11] we have mixed up Weddle's transformed rule and Cleanshaw-Curtis five point rule each of same precision five and produced a mixed quadrature of precision seven. A new rule of precision seven is used for evaluating an integral of the form,

$$I(f) = \int_{L} f(z) dz.$$
(1.1)

Where *L* is a directed line segment from the point $(z_0 - h)$ to $(z_0 + h)$ in the complex plane and f(z) is analytic in certain domain Ω containing the line segment *L*. Lether [7] using the transformation $z = (z_0 + th)$, where $t \in [-1, 1]$ transformed the integral (1.1) to the integral

$$h \int_{-1}^{1} f(z_0 + th) dt$$
. (1.2)

2. Construction of mixed quadrature rule:

Weddle's transformed rule $R_W(f)$ is

$$I(f) \cong R_{W}(f) = \frac{h}{10} \begin{bmatrix} f(z_{0} - h) + f(z_{0} + h) + \\ f(z_{0} - \frac{h}{3}) + f(z_{0} + \frac{h}{3}) + 5f(z_{0} - \frac{2h}{3}) \\ + 5f(z_{0} + \frac{2h}{3}) + 6f(z_{0}) \end{bmatrix} (2.1)$$

Expanding each term of eqn (2.1) using Taylor series about z_0

$$R_{w}(f) = 2h \begin{bmatrix} f(z_{0}) + \frac{h^{2}}{3!} f''(z_{0}) + \\ \frac{h^{4}}{5!} f^{iv}(z_{0}) + \frac{35h^{6}}{243 \times 6!} f^{vi}(z_{0}) + \\ \frac{1307h^{8}}{10935 \times 8!} f^{viii}(z_{0}) + \dots \end{bmatrix}$$
(2.2)

We can write eqn (1.1) using Taylor series expansion about z_0

$$I(f) = 2h \begin{bmatrix} f(z_0) + \frac{h^2}{3!} f''(z_0) + \\ \frac{h^4}{5!} f^{iv}(z_0) + \frac{h^6}{7!} f^{vi}(z_0) + \\ \frac{h^8}{9!} f^{viii}(z_0) + \dots \end{bmatrix}$$
(2.3)

Cleanshaw-curtis five point rule is

$$I(f) \cong R_{CC5}(f) = \frac{h}{15} \begin{bmatrix} f(z_0 + h) + f(z_0 - h) + \\ 8f(z_0 + \frac{h}{\sqrt{2}}) + \\ 8f(z_0 - \frac{h}{\sqrt{2}}) + 12f(z_0) \end{bmatrix}$$
(2.4)

3. Error Analysis

Now the error associated with Weddle's rule $R_w(f)$ is

$$E_{W}(f) = I(f) - R_{W}(f)$$

= $-\frac{4h^{7}}{1701 \times 6!} f^{vi}(z_{0}) - \frac{184h^{9}}{10935 \times 8!} f^{viii}(z_{0})$ (3.1)

Now the error associated with Cleanshaw-Curtis five point rule $R_{CC5}(f)$ is

$$E_{CC5}(f) = \frac{1}{315 \times 5!} h^7 f^{\nu i i}(z_0) + \frac{1}{360 \times 7!} h^9 f^{\nu i i i}(z_0) + \dots (3.2)$$

Using Taylor series expansion of $eq^n(2.1)$ and eq^n , (2.4) we get,

$$I(f) = R_{W}(f) + E_{W}(f)$$
(3.3)
$$I(f) = R_{CC5}(f) + E_{CC5}(f)$$
(3.4)

Where f is infinitely differentiable since it is assumed to be analytic in certain

domain Ω containing the line segment *L*. Now multiplying $\left(\frac{1}{81}\right)$ in eqn (3.4) and $\left(\frac{1}{10}\right)$ in

eqn(3.3) and adding,

$$I(f) = R_{WCC5}(f) + E_{WCC5}(f)$$
(3.5)

$$R_{WCC5}(f) = \frac{1}{91} [10R_{CC5}(f) + 81R_{W}(f)]$$
(3.6)

$$E_{wccs}(f) = \frac{1}{91} [10E_{ccs}(f) + 81E_w(f)]$$
(3.7)

Calculation of $E_{WCC5}(f)$

Substituting eqn (3.1) and eqn (3.2) in eqn (3.7)

$$E_{WCC5}(f) = -\frac{77}{49140 \times 7!} h^9 f^{\nu i i i}(z_0) \qquad (3.8)$$

From eqn (3.8), the degree of precision of $R_{WCC5}(f)$ is seven where as degree of precision o $R_w(f)$ and $R_{CC5}(f)$ are five.

4. Numerical Verification

Let us approximate the value of the following integrals I_1 , I_2 , I_3 using $R_W(f)$, $R_{CC5}(f)$, $R_{WCC5}(f)$ quadrature rule Where \underline{i}

$$I_1 = \int_{-i}^{i} e^{z} dz$$
, $I_2 = \int_{-i}^{i} \cos z dz$, $I_3 = \int_{-i}^{3} \cosh z dz$

Table-1 (Comparison between approximate andexact results)

Exact value of	Weddle's	Clenshaw-Curtis
the integrals	Transformed	five point rule
	rule $R_{W}(f)$	$R_{CC5}(f)$
I ₁ =1.6829419	1.6829391	1.6829678776630
69615793i	11213524i	91i
$I_2 = 2.3504023$	2.3504060	2.3503753769314
87287603i	80572671i	79i
I ₃ =0.6543893	0.6543893	0.6543894056608
93592304i	92120058i	18i

Table-2 (Comparison between approximateand exact results)

$\begin{array}{c} \text{Mixed} \\ \text{quadrature rule} \\ R_{WCC5}(f) \end{array}$	$ E_w(f) $	$ E_{CC5}(f) $	$ E_{wcc5}(f) $
1.682942272	0.00000	0.00002	0.00000
361828i	285	590	030
2.350402706	0.00000	0.00002	0.00000
546167i	369	701	031
0.654389393	0.00000	0.00000	0.00000
608054i	0001	001	000001

From the Table-1 and Table-2 we compare the results as follows,

$$|E_{WCC5}(f)| \leq |E_W(f)| \leq |E_{CC5}(f)|$$

5. Conclusion

From the Table-1 and Table-2 it is evident that the mixed quadrature rule $R_{WCCS}(f)$ of degree of precision seven is giving us better result than the constituent rules $R_W(f)$ and $R_{CCS}(f)$ each of degree of precision five. Our quadrature rule is more efficient and numerically better convergent to exact result.

Acknowledgements

This work is supported by the funding agency (University Grant Commission), New-Delhi Grant serial No.219550 (Minor Research project)

References

- [1] Conte, S., and C.de.Boor, 1980. Elementary Numerical Analysis, Tata Mc-Graw Hill.
- [2] Atkinson, Kendal E.,2001. An Introduction to Numerical Analysis, John Wiley, 2nd edition.
- [3] Das, R.N., and G.Pradhan, 1996. A mixed quadrature rule for approximate evaluation of real definite integrals, Int.J.Math.edu.sci, vol. 27, pp. 279-283.
- [4] Jena, S.R., and R.B.Dash,2009. Mixed quadrature of real definite integrals over triangles , Paci-Asian.J.Math , vol. 3, pp. 119-124.
- [5] Dash, R.B., and S.R.Jena, 2008. A Mixed quadrature of Modified Birkhoff-Young using Richardson extrapolation and Gauss-Legendre-4 point transformed rule,int.J.Appli.Math.Appli, vol. 2, pp. 111-117.
- [6] Acharya, B.P., and R.N.Dash,1983. Compound Birkhoff-Young rule for numerical integration of analytic functions, Int.J.Math.Edu.Sci.Technol, vol. 14, pp. 1-10.
- [7] Lether, F.G., 1976. On Birkhoff-Young qadrature of analytic functions, J.Comut.Applied.Math, vol. 2, pp. 81.
- [8] Kreyszig, Erwin,2006. Advanced Engineering Mathematics, Wiley india, 9th edition.
- [9] Birkhoff,G., and D.Young, 1950. Numerical quadrature of analytic and harmonic functions, J. Maths Phys, 29, 217.

[10] G.V. Milovanovic, T.S. Igic, D. Turnic (2015)"Generalised quadrature rule of Gaussian type for numerical integration of singular integrals", J.Comput. Appl. Math, 278, 306-325.

[11] Jena, S.R.,Dash, P.(2015),"Numerical treatment of analytic functions via mixed quadrature rule.", Research journal of applied sciences, Engineering and Technology 10(4):391-392.