S- Prime Meet Matrices on posets

1. Dr. N. Elumalai , 2. Prof.R.Anuradha , 3. S.Praveena

Abstract - We consider S-prime meet matrices as an abstract generalization of S-prime greatest common divisor (GCD) matrices. We also found determinant and inverse and discuss the some of the most important properties of S-prime GCD matrices are presented in terms of Error! Reference source not found. meet me meet matrices.

I. INTRODUCTION

Let $S = \{x_1, x_2, x_3, \ldots, x_n\}$ be a set of n positive integers with $x_1 < x_2 < x_3 < \ldots < x_n$ and let $f : P \rightarrow \mathbb{C}$ be a complex valued function on \mathbb{Z}_+(i.e., arithmetical function). Let (x_i, x_j) denotes the greatest common divisor (GCD) of x_i and x_j and define the nxn matrices $(S)_{ij} = ((S)_{ij}) = f(x_i, x_j).$ We refer to (S) as the GCD matrix on S with respect to f. The set S is said to be factor closed if it contains every positive divisor of each $x_i \in S$ clearly a factor closed set is always GCD – closed further converse does not hold.

In 1876, the concept of classical Smith determinant with entries on \mathbb{Z}_+ was introduced by H.J.S. Smith [12],

$$\prod_{i=1}^{n} \Phi(x_i)$$

where Φ is the Euler’s totient function. The GCD matrix with respect to f is,

$$\begin{bmatrix}
 f(x_1, x_1) & f(x_1, x_2) & \ldots & f(x_1, x_n) \\
 f(x_2, x_1) & f(x_2, x_2) & \ldots & f(x_2, x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 f(x_n, x_1) & f(x_n, x_2) & \ldots & f(x_n, x_n)
\end{bmatrix}$$

$$\det \left[f(x_i, x_j) \right] = \prod_{k=1}^{n} (f \ast \mu) (x_k)$$

In this paper describes an abstract generalization of S-prime GCD matrices, namely S-prime meet matrices on posets.

Previously results in this direction were obtained in [1, 2, 3, 5, 9, 10, 11]. The purpose of the paper is to express sum of the most important properties of S-prime GCD matrices on a factor closed sets in the language of S-prime meet matrices, more precisely to set a structure theorem for S-prime meet matrices then derive explicit expression and found further determinant and inverse of S-prime meet matrices.

2. Structure of S-prime Meet Matrices on posets

2.1 Definition

Let $(p, \leq) = (\mathbb{Z}^+ , |)$ be a finite poset. We call P be a meet - semi lattice if for any $x, y \in P$ there exist a unique $z \in P$ such that (i) $z \leq x$ and $z \leq y$ and (ii) if $w \leq x$ and $w \leq y$ for some $w \in P$, then $w \leq z$.

In such a case z is called the meet of x and y is denoted by $x \wedge y$. For each $x \in P$, the principal order ideal $\downarrow x$ is defined by $\downarrow x = \{ y \in P | y \leq x \}$ p.246, [8]

2.2 Definition

Let S be a subset of subset of P .we call S be a lower - closed if for every $x, y \in P$ and $x \in S$ and $y \in S$ we have $y \in S$.

2.3 Definition

Let S be a subset of P then S is said to be meet-closed if for every $x, y \in S$ we have $x \wedge y \in S$.

In this case S itself is a meet lattices. It is clear that a lower –closed subset of a meet semi- lattice is always meet-closed but not conversely. The concept “lower–closed” and “Meet -closed” are generalization of “factor -closed” and “GCD-closed” [6,7] respectively.
In what follows, let P always denote a finite meet lattice, S a poset that can be embedded in a Meet-semi lattice and \(\mathcal{F} \) the unique minimal meet semi-lattice containing S.

2.4 Definition

Let \(x \) and \(y \) be two elements the poset P and \(\mu \) is the mobius function of the poset \((S, \prec) \) then

\[
\mu(x, y) = \begin{cases}
0 & \text{if } x \neq y \\
1 & \text{if } x = y \\
-\sum_{z \in S} \mu(x, z) & \text{otherwise}
\end{cases}
\]

2.5 Definition

Let \((P, \prec, \wedge, \vee)\) be a S-prime meet-semi lattice, let \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) be a subset of P such that \(x_i \prec x_j \Rightarrow i < j \) and let \(f \) be a complex valued function on P. Then \(n \times n \) matrix \((s)_{ij} = ((s)_{ij})_{ij} = (f_{ij})\) where \(f_{ij} = 4(x_i \wedge x_j) + 1 \) is called the S-prime Meet Matrix on S with respect to \(f \).

3. Generalized Totient functions

3.1 Definition

let \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) be a subset of P, and let \(f \) be a function on P with complex values. Then the function \(g_{s,f} \) on S is defined inductively by

\[
g_{s,f}(x_j) = f(x_j) - \sum_{x_i \leq x_j} g_{s,f}(x_i)
\]

Where \(x_i \leq x_j \) means that \(x_i \leq x_j \), \(x_i \neq x_j \) or \(f(x_j) = \sum_{x_i \leq x_j} g_{s,f}(x_i) \) (p.2,[2])

3.2 Remark

If S is a factor-closed set of positive integer ordered by divisibility and \(f(x) = x \) for all x, then \(g_{s,f} = \Phi \) Euler’s totient function. Thus \(g_{s,f} \) in definition 3.1 is a generalization of Euler’s totient function

3.3 Theorem

Let \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) be S-prime Meet-closed. Without loss of generality we may assume that \(i < j \) whenever \(x_i \prec x_j \) then

\[
g_{s,f}(x_j) = \sum_{x_i \leq x_j} \sum_{z \in S} f(w)\mu(w, z)
\]

Where \(\mu \) is the mobius function of P.

Proof:

By using the definition 3.1

\[
f(x_j) = \sum_{x_i \leq x_j} g_{s,f}(x_i) = \sum_{x_i \leq x_j} \sum_{z \in S} f(w)\mu(w, z)
\]

We write,

\[
f(x) = \sum_{z \in S} g(z) \text{ or } g(x) = \sum_{z \in S} f(z)\mu(z, x)
\]

for all \(x \in P \)

It has to be prove that,

\[
\sum_{z \in S} g(z) = \sum_{x_i \leq x_j} \sum_{z \in S} f(w)\mu(w, z)
\]

Now consider the sum of R.H.S of equation (1)

Let \(x_i \leq x \) and \(z \leq x_i \Rightarrow z \leq x_i \)

Thus every \(z \) occurring on the right side of equation (1) occurs on the left side of equation (1).

Conversely, consider the sum on the left side of equation (1).

Suppose that \(z \leq x_i \) we have \(z \leq x_i \) by minimality of i, we have \(r = i \) or \(x_i = x_i \) therefore \(x_i \leq x_i \) means \(x_i \leq x_i \) thus every \(z \) occurring on the side of equation (1).

This completes the proof.

3.4 Theorem

If S is lower closed subset of p.

Then \(g_{s,f}(x_j) = \sum_{x_i \leq x_j} f(x_i)\mu(x_i, x_j) \)

Proof:

Already we know that the result,

\[
g_{s,f}(x_j) = \sum_{z \in S, w \leq z} f(w)\mu(w, z)
\]

It reduces we get the proof of theorem Then S is lower closed.

3.5 Example

Let \(S = \{x_1, x_2, \ldots, x_n\} \) be a chain with \(x_1 \prec x_2 \prec \ldots \prec x_n \) Then \(g_{s,f}(x_1) = f(f(x_1)), g_{s,f}(x_2) = f(f(x_2)) - f(x_1) \)

In general \(g_{s,f}(x_j) = f(x_j) - f(x_{j-1}) \) where \(j = 2, 3, 4, \ldots, n \).

3.6 Example

Let \(S = \{x_1, x_2, \ldots, x_n\} \) be an incomparable set and let \(S = \{x_0, x_1, x_2, \ldots, x_n\} \). Then, \(g_{s,f}(x_0) = f(x_0) \), \(g_{s,f}(x_i) = f(x_i) - f(x_0) \), and \(g_{s,f}(x_2) = f(x_2) - f(x_0) \).

In general \(g_{s,f}(x_j) = f(x_j) - f(x_0) \) for \(j = 1, 2, 3, \ldots, n \)

3.7 Theorem (STRUCTURE THEOREM)

Let \(S = \{x_1, x_2, \ldots, x_n\} \) and \(T = \{y_1, y_2, \ldots, y_m\} \) be any two subsets of P. Define the incidence matrix whose entry is 1 if \(y_j \leq x_i \), or \(j \)-entry is 1 if \(y_j \leq x_i \), and zero otherwise namely that is,

\[
E(S, T) = (\epsilon_{i,j})_{n \times m}
\]

where \(\epsilon_{i,j} = \begin{cases}
1 & \text{if } y_j \leq x_i \\
0 & \text{otherwise}
\end{cases} \)

Example:

1. We consider \(S = \{5, 9, 13\}, T = \{9, 17, 21\} \) are the S-prime number subsets.
Then the incidence matrix of \((S, T)\) is \(E(S, T)\)
\[
= (e_{i,j}) = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{bmatrix}
\]

2. We consider \(S=\{5,7,8,4\}\) and \(T=\{2,6,3,7\}\) are the subsets of \(P\). Then the incidence matrix of \((S, T)\) is
\[
E(S, T) = (e_{i,j}) = \begin{bmatrix}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
\end{bmatrix}
\]

3.8 Definition
If \(T=\{y_1, y_2, \ldots, y_m\}\) be a \(S\)-prime Meet-closed subset of \(P\) containing \(S\) \((m \geq n)\). Let \(D=\{d_1, d_2, \ldots, d_m\}\) be any subset of \(P\) containing the elements \(4(x_i \land x_j) + 1; \quad i,j=1,2,3,\ldots,n\). Let the elements of \(D\) be arranged so that,
\[
d_i \leq d_j \Rightarrow i \leq j
\]

3.9 Theorem
If \(T=\{y_1, y_2, \ldots, y_m\}\) be a \(S\)-prime Meet closed subset of \(P\) containing \(S=\{x_1, x_2, \ldots, x_m\}\) \((m \geq n)\) then \((s)_f = E \land E^T = AA^T\)

Where, \(E=E(S,T) ; \quad \Lambda = \text{diag}(g_{f,s}(y_1), g_{f,s}(y_2), \ldots, g_{f,s}(y_m))\)

and \(A = E \Lambda^{\frac{1}{2}}\).

Proof:
Now we consider the Example
\[
S=\{2, 3\}, \quad T=\{1,2,3,\}
\]
Then by using definition(2.3),
\[
(s)_f = \left[f(4(x_{i} \land x_{j}) + 1) \right] = \begin{bmatrix}
f(4(2 \land 2) + 1) & f(4(2 \land 2) + 1) \\
f(4(3 \land 2) + 1) & f(4(3 \land 3) + 1) \\
f(4(2 + 1) & f(4(2 + 1) \\
f(4(3 + 1) & f(4(3 + 1)
\end{bmatrix}
\]

\[
E=E(S,T) = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

\[
\Lambda = \text{diag}(g_{f,s}(d_1), g_{f,s}(d_2), g_{f,s}(d_3))
\]
\[
g_{s,f}(x_1) = f(x_1), \quad g_{s,f}(x_2) = f(x_2) - f(x_1), \quad g_{s,f}(x_3) = f(x_3) - f(x_1)
\]
\[
g(1) = f(1) = f(9), \quad g(2) = f(2) - f(1) = f(9) = f(3), \quad g(3) = f(3) - f(2) = f(13) = f(9)
\]

\[
\Lambda = \text{diag}(g_{s,f}(d_1), g_{s,f}(d_2), g_{s,f}(d_3))
\]

\[
E \land E^T = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
f(9) & 0 & 0 & 1 & 1 \\
0 & f(9) - f(3) & 0 & 1 & 1 \\
0 & 0 & f(13) - f(9) & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
f(3) & f(9) - f(3) & 0 \\
f(3) & f(9) - f(3) & f(13) - f(9)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
f(9) & f(9) \\
f(9) & f(13)
\end{bmatrix} = (S)_f
\]

Now \(A = E \Lambda^{\frac{1}{2}}\)
\[
\Lambda^T = (E \Lambda^{\frac{1}{2}})^T = (\Lambda^T)^T E^T
\]

\[
AA^T = E \Lambda E^T = \begin{bmatrix}
f(9) & f(9) \\
f(9) & f(13)
\end{bmatrix}
\]

\(S_h = AA^T = E \Lambda E^T\)

Let \(S=\{1,2,3\}\) Then
\[
(S)_h = \begin{bmatrix}
f(5) & f(5) & f(5) \\
f(5) & f(9) & f(5) \\
f(5) & f(5) & f(13)
\end{bmatrix}
\]

\(\text{diag}(S)_h = f(5)f(13)-f(5)^2- f(5)f(13)f(9)^2 - f(5)^3f(9)^2 + f(5)^3f(9)f(13)) \]

Proof:
Now we consider the example,
\(S = \{1, 2\} \quad \text{and} \quad T = \{1,2,3\}\). Then
\[
(S)_f = \left[f(4(x_{i} \land x_{j}) + 1) \right] = \begin{bmatrix}
f(4(1 \land 1) + 1) & f(4(1 \land 2) + 1) \\
0 & f(4(2 \land 1) + 1) \\
0 & f(4(2 \land 2) + 1)
\end{bmatrix}
\]

\[
\Lambda = \text{diag}(g_{s,f}(d_1), g_{s,f}(d_2), g_{s,f}(d_3))
\]

\[
E=E(S,T) = \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

Since \(\Lambda = \text{diag}(g_{s,f}(d_1), g_{s,f}(d_2), g_{s,f}(d_3))\)

and by \(g_{s,f}(x_i) = f(x_i) - f(x_{i-1})\)

where \(j=2,3,4,\ldots,n\).
\[g_{x,f}(x_i) = f(x_i); \quad g_{x,f}(x_2) = f(x_2) - f(x_1); \]
\[g_{x,f}(x_3) = f(x_3) - f(x_2). \]

\[g(1) = f(5), \quad g(2) = f(9) - f(5), \]
\[g(3) = g(13) - g(9). \]

\[E \Lambda^T = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \]
\[= \begin{bmatrix} f(5) & 0 & 0 \\ 0 & f(9) - f(5) & 0 \\ 0 & 0 & f(13) - f(9) \end{bmatrix} \]
\[= \begin{bmatrix} f(9) & f(5) \\ f(9) & f(13) \end{bmatrix} \]

Now \(A = E \Lambda^2 \)
\[= \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]
\[= \begin{bmatrix} f(5) & 0 & 0 \\ 0 & f(9) - f(5) & 0 \\ 0 & 0 & f(13) - f(9) \end{bmatrix} \]
\[= \begin{bmatrix} f(5) & f(5) \\ f(5) & f(13) \end{bmatrix} \]

3.10 Theorem

If \(S \) is a s-prime meet -closed. Then \(\text{det}(S) = \prod_{i=1}^{n} g_{x,f}(x_i) \)

Proof:

The theorem is proved and verified with a suitable example. Consider the set \(S=\{1, 2, 3\} \)

Then \[\left(S \right) = \begin{bmatrix} f(4) & f(4) & f(4) \\ f(4) & f(4) & f(4) \\ f(4) & f(4) & f(4) \end{bmatrix} \]

\[\left(S \right)_f = \begin{bmatrix} f(5) & f(5) & f(5) \\ f(5) & f(5) & f(5) \\ f(5) & f(5) & f(5) \end{bmatrix} \]

\[\left(S \right)_r = \begin{bmatrix} f(5)[f(9)f(13)-f(5)^2] - f(5)[f(13)-f(5)^2] \\ f(5)[f(5)^2 - f(5)f(9)] \end{bmatrix} \]

From the equation (1) and (2), to obtain
\[\text{det}(S) = \prod_{i=1}^{n} (g(x_i)) \]

\[\text{Hence the theorem is proved.} \]

3.11 Corollary

If \(S=\{x_1, x_2, x_3, ..., x_n\} \) is a chain with \(x_1 < x_2 < x_3 < ... < x_n \). Then
\[\text{det}(S) = \prod_{i=1}^{n} (f(x_i) - f(x_{i-1})) \]

Proof:

By using theorem,

If \(S \) is a S-prime meet closed then
\[\text{det}(S) = \prod_{i=1}^{n} (g_{x,f}(x_i)) \]

We have \(f(5) \neq f(9) \neq f(13) \)
\[\text{det}(S) = g(1)g(2)g(3) \]

3.12 Theorem

Let \(T = \{y_1, y_2, y_3, ..., y_m\} \) be a S-prime Meet -closed subset of \(P \) containing \(S=\{x_1, x_2, x_3, ..., x_n\} \). Then,
\[\text{det}(S) = \sum_{k=1}^{m} \text{det}(E(k_1, k_2, ..., k_n)^2 g_{T,f}(y_{k_1}, ..., g_{T,f}(y_{k_2}, ..., g_{T,f}(y_{k_n})}) \]

Where, \(E = E(S,T) \)

Proof:

\[(S)_E = E \Lambda E^T, \quad \text{also det}(E) = \text{det}(E^T), \quad \text{by using known theorem.} \]

Now we consider the example ,
\[S = \{2,3\} \quad \text{and} \quad T = \{1,2,3\} \]. Then,
\[(S)_f = \begin{bmatrix} f(4) & f(4) & f(4) \\ f(4) & f(4) & f(4) \\ f(4) & f(4) & f(4) \end{bmatrix} \]

The incident matrix of \(S \& T \) is,
\[E = E(S,T) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \]
E \Lambda E^T =
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & f(9) - f(5) & 0 \\
0 & 0 & f(13) - f(5)
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
f(9) & f(5) \\
0 & f(13) - f(5)
\end{bmatrix}
(S_i)_{E \Lambda E^T} = E \\
\det(E) \Rightarrow E = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} = 0
\det(E^T) = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
0 & 0
\end{bmatrix}
\det(E) = \det(E^T)
\det(S_i) = \sum_{1 \leq k_1, \ldots, k_n \leq m} \det(E(k_1, k_2, \ldots, k_n)^2 g_{T, f}(y(k_1), g_{T, f}(y(k_2), \ldots, g_{T, f}(y(k_n)]
Hence proved.

4. Determinant and inverse S-prime Meet Matrix on posets

4.1 Definition
Let the element of S be arranged so that $x_i \leq x_j \Rightarrow i < j$.
Let $d = \{d_1, d_2, d_3, \ldots, d_n\}$ be any subset of P continuous on element $x_i \wedge x_j, i = 1, 2, 3, \ldots, n$. Let the elements of D be arranged so that $d_i \leq d_j \Rightarrow i < j$. The arithmetical function $g_{D, f}$ on D derived by
$$g_{D, f}(d_i) = \sum_{d_i \leq d_j} f(d_j) \mu(d_i, d_j)$$
where $\mu(D)$ is the moebius function of the posets (D, \leq).

4.2 Theorem
Let $S = \{x_1, x_2, x_3, \ldots, x_n\}$ be a subset of P with $D = \{d_1, d_2, d_3, \ldots, d_m\}$. Let g be an arithmetical function then
$(S_i)_{E \Lambda E^T} = E \Delta (g(d_1), g(d_2), g(d_3), \ldots, g(d_m))$ E^T where E is (S, D)
Proof:
Similar to a proof of 3.9

4.3 Theorem
Let S, D, F, and g be as in the theorem 4.2 then where
$$(S_i)_{E \Lambda E^T} = \sum_{1 \leq k_1, \ldots, k_n \leq m} \det[E(k_1, k_2, \ldots, k_n)^2 g(d_1), g(d_2), g(d_3), \ldots, g(d_m)]$$
Where $k_1, k_2, k_3, \ldots, k_n$ is the sub-matrix of E, E is (S, D) consist of the k_1, k_2, \ldots, k_n columns of E. Further if g is a function with positive value then $\det(M) \geq g(x_i)g(x_j)g(x_k)\ldots g(S_m)$ and the equality holds iff S is meet-closed .
Proof:
Since $(S_i)_{E \Lambda E^T} = E(g(d_i))E^T$ and $\det E = \det E^T$ so the proof of the theorem is obvious.

4.4 Theorem
If S is a lower closed subset of P then
$$\det(S) = \prod_{i=1}^{n} (g(d_i))$$
$g(d_i) = \sum_{d_i \leq d_j} (4d_i + 1)\mu(d_j, d_i)$

Proof:
By using theorem 4.2 and definition 4.1 to get the proof.

4.5 Theorem
$B = (b_{ij})$ where
$$b_{ij} = \frac{(-1)^{i+j}}{\det(S)_{f}} \sum_{1 \leq k_1, \ldots, k_n \leq m} \det E(S_{j})_{(k_1, k_2, \ldots, k_{n-1})}$$
$E \Delta (g(d_1), g(d_2), \ldots, g(d_n))$
Proof:
By using the theorem 4.2, 4.3.

4.6 Theorem
If $(S)_{f} = (f_{ij})$ is invertible then the inverse of $(S)_{f}$ in the nxn matrix $B = (b_{ij})$
where $b_{ij} = \frac{\alpha_{ij}}{\det(s)_{f}}$, Where α_{ij} in the co-factor of the ij^{th} entry of $(S)_{f} = (f_{ij})$.

Proof:
It is a general method used to prove.

4.7 Theorem
Suppose that S is meet-closed . If $(S)_{f}$ is invertible then the inverse of $(S)_{f}$ is $B = (b_{ij})$
Where $b_{ij} = \sum_{d_j \leq d_i} \mu(d_j, d_i)\mu(d_j, d_i)$

Proof:
It is similar to the proof of theorem.

4.8 Example
Let $S = \{1, 2\}$ Then by definition (2.5)
$$(S)_{M} = \begin{bmatrix} 4(x_1 \land x_2) + 1 \end{bmatrix}$$
$$(S)_{f} \begin{bmatrix} (4(1 \land 1) + 1) & (4(1 \land 2) + 1) \\
(4(2 \land 1) + 1) & (4(2 \land 2) + 1)
\end{bmatrix}$$
$$= \begin{bmatrix} 4(1) + 1 & 4(1) + 1 \\
4(1) + 1 & 4(2) + 1
\end{bmatrix}$$
$$= \begin{bmatrix} 5 & 5 \\
5 & 9
\end{bmatrix}$$
And by definition (4.4) \(\det (s)_M = \prod_{i=1}^{n} (g(d_i)) \)

\[
g(d_i) = \sum_{d_i \leq 1} (4d_i + 1) \mu(d_i, d_i)
\]

\[
g(1) = \sum_{d_i \leq 1} (4d_i + 1) \mu(d_i, 1) = (4(1) + 1) \mu(1,1) = 5
\]

\[
g(2) = \sum_{d_i \leq 2} (4d_i + 1) \mu(d_i, 2)
\]

\[
= (4(1) + 1) \mu(1,2) + (4(2) + 1) \mu(2,2)
\]

\[
= 5(-1) + 9(1) = 4
\]

\[
\det (S)_M = g(1)g(2) = (5)(4) = 20
\]

And by using definition (4.7),

\[
b_{11} = \sum_{1 \leq d_j \leq d_k} \frac{\mu(1,d_j)\mu(1,d_k)}{g(d_k)}
\]

\[
b_{11} = \sum_{1 \leq d_j \leq 1/d_k} \frac{\mu(1,d_j)^2}{g(d_k)}
\]

\[
b_{11} = \frac{1}{5} + \frac{1}{4} \frac{9}{20}
\]

\[
b_{12} = \sum_{1 \leq d_j \leq 2/d_k} \frac{\mu(1,d_j)\mu(2,d_k)}{g(d_k)}
\]

\[
b_{12} = \frac{\mu(1,2)\mu(2,2)}{g(2)}
\]

\[
b_{12} = \frac{(1)(-1)}{4}
\]

\[
b_{12} = -\frac{1}{4}
\]

\[
b_{21} = \sum_{2 \leq d_j \leq 1/d_k} \frac{\mu(2,d_j)\mu(1,d_k)}{g(d_k)}
\]

\[
b_{21} = \frac{\mu(2,1)\mu(2,2)}{g(2)}
\]

\[
b_{21} = -\frac{1}{4}
\]

\[
b_{22} = \sum_{2 \leq d_j \leq 2/d_k} \frac{\mu(2,d_j)\mu(2,d_k)}{g(d_k)}
\]

\[
b_{22} = \frac{1}{4}
\]

\[
(S)_M^{-1} = \begin{bmatrix}
9 & -1 \\
20 & 4
\end{bmatrix}
\]

REFERENCES

1. Dr. N. Elumalai, Associate Professor, Department of mathematics, A.V.C College (Autonomous), Mannampandal 609305, Mayiladuthurai-Tamil Nadu

2. R. Anuradha, Asst. Professor, Department of mathematics, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai

3. S. Praveena, II – M.Sc, Mathematics, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai.