Optimization of NTRU Cryptosystem using ACO and PSO Algorithm

Himani Agrawal
Associate Professor in E&Tc Deptt.
SSGI(FET), Bhilai (C.G.) India

Dr.(Mrs.) Monisha Sharma
Professor in E&Tc Deptt
SSGI(FET), Bhilai (C.G.) India

Abstract—In order to achieve the security for the e-business application, cryptographic methods are used. The two widely accepted and used cryptographic methods are symmetric and asymmetric. The Symmetric cryptosystem also called secret key cryptosystem, for example DES. The Asymmetric Cryptosystem also called public key cryptosystem, for example RSA and NTRU. NTRU is the first secure public key cryptosystem not based on factorization or discrete logarithmic problems. Also NTRU is faster than RSA and uses less memory. Therefore in order to construct a highly secure speedy cryptosystem we have to optimize the NTRU Cryptosystem with respect to simulation time. In this paper we optimize NTRU using advanced optimization techniques i.e. Ant Colony Optimization (ACO) and Particle Swarm Optimization(PSO) algorithm separately. We implemented this optimized NTRU in MATLAB and compared the simulation time of optimized NTRU with NTRU, DES, and RSA cryptosystems for different size of text files. We found that the speed of optimized NTRU is greater than the NTRU without any optimization technique.

Keyword—DES, RSA, NTRU, ACO, PSO, optimization, cryptography

I. INTRODUCTION

Optimization is the act of obtaining the best result under the given circumstances. In design, construction and maintenance of any engineering systems many managerial and the technological decisions have to be taken at several stages. The ultimate goal of all such decisions is either to minimize the effort required or to maximize the desired benefit. Hence optimization can be defined as the process of finding the conditions that give the minimum or maximum value of a function, where the function represents the effort required or the desired benefit [1] or in other words maximization or minimization of one or more functions with any possible constraints is called optimization [2]. The origin of optimization methods can be traced from 300 BC when Euclid identified the minimal distance between two points to be length of straight line joining the two. He also proved that a square has the greatest area among the rectangles with given total length of edges. Heron proved in 100 BC that light travels between two points through the path with shortest length when reflecting from a mirror. Before the invention of calculus of variations, the optimization problems like, determining optimal dimensions of wine barrel in 1615 by J. Kepler, a proof that light travels between two points in minimal time in 1657 by P. De Fermat were solved. I. Newton (1660s) and G.W. von Leibniz (1670s) created mathematical analysis that forms the basis of calculus of variation. L. Euler’s publication in 1740 began the research on general theory of calculus of variations. The method of optimization for constrained problems, which involve the addition of unknown multipliers, became known by the name of its inventor, J. L. Lagrange. Cauchy made the first application of the gradient method to solve unconstrained optimization problems in 1847. G. Dantzig presented Simplex method in 1947. N. Karmarkar’s polynomial time algorithm in 1984 begins a boom of interior point optimization methods. The advancement in solution techniques resulted several well defined new areas in optimization methods. The linear and non-linear constraints arising in optimization problem can be easily handled by penalty method. In this method few or more expressions are added to make objective function less optimal as the solution approaches a constraint [2].

II. METHODOLOGY

A brief introduction of various cryptosystems implemented in this paper are as follows.

DES: DES is a Symmetric block cipher. It was created in 1972 by IBM, using the Data Encryption Algorithm. It was adopted by the U.S. Government as its standard encryption method for commercial and unclassified communications in 1977. DES begins the encryption process by using a 64-bit key. The NSA restricted the use of DES to a 56-bit key length, so DES discards 8-bits of the key and then uses the remaining key to encrypt data in 64-bit blocks. DES can operate in CBC, ECB, CFB, and OFB modes, giving it flexibility.

In 1998, the supercomputer DES Cracker, assisted by 100,000 distributed PCs on the Internet, cracked DES in 22 hours. The U.S. Government has not used DES since 1998[5].

RSA: RSA is an Asymmetric cipher. It is one of the oldest and the most widely used public key cryptographic
algorithms. It was the first algorithm known to be suitable for signing as well as encryption. The system works on two large prime numbers, from which the public and private keys will be generated. RSA was developed by Ron Rivest, Adi Shamir, and Leonard Adleman, in 1977. RSA derives its name from the initials of the last name of each of its developers. It is commonly used with key strengths of 1024-bits, but its real strength relies on the prime factorization of very large numbers [5]. The RSA scheme is a block cipher in which the plaintext and the cipher text are integers between 0 and n-1 for some modulus n.

NTRU: NTRU is one of the public key cryptosystems. NTRU (Nth degree truncated polynomial ring units) is a collection of mathematical algorithms based on manipulating lists of very small integers. It was first introduced by Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman in 1998 [6]. NTRU is the first secure public key cryptosystem not based on factorization or discrete logarithmic problems. The keys are generated by having small potent polynomials from the ring of truncated polynomials given by \(\mathbb{Z}/(X^N - 1) \). The security of the NTRU cryptosystem is based on the difficulty of finding short vectors in a certain lattice. The larger the parameter \(N \), the more secure the system is. NTRU is a probabilistic cryptosystem. The encryption process includes a random element and therefore one message has several possible encryptions. The advantage of NTRU over other cryptosystems is that it is highly random in nature, Encryption and decryption are very fast, the key sizes are relatively small and the key generation is fast and easy[7,8].

A. Evolutionary Optimization Algorithms

Evolutionary algorithms (EAs) are developed to arrive at near-optimum solutions to a large scale optimization problem. Ant Colony optimization(ACO) and Particle Swarm Optimisation (PSO) are the two popular Evolutionary Optimization Algorithms. A brief description of these algorithms are as follows:

B. Ant Colony Optimization

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs.

This algorithm is a member of the ant colony algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis, the first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food. The original idea has since diversified to solve a wider class of numerical problems, and as a result, several problems have emerged, drawing on various aspects of the behavior of ants.

In the natural world, ants (initially) wander randomly, and upon finding food return to their colony while laying down pheromone trails. If other ants find such a path, they are likely not to keep travelling at random, but to instead follow the trail, returning and reinforcing it if they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The more time it takes for an ant to travel down the path and back again, the more time the pheromones have to evaporate. A short path, by comparison, gets marched over more frequently, and thus the pheromone density becomes higher on shorter paths than longer ones. Pheromone evaporation also has the advantage of avoiding the convergence to a locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to the following ones. In that case, the exploration of the solution space would be constrained.

Thus, when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely to follow that path, and positive feedback eventually leads to all the ants following a single path. The idea of the ant colony algorithm is to mimic this behavior with “simulated ants” walking around the graph representing the problem to solve.

1) **Edge selection**

An ant is a simple computational agent in the ant colony optimization algorithm. It iteratively constructs a solution for the problem at hand. The intermediate solutions are referred to as solution states. At each iteration of the algorithm, each ant moves from a state \(x \) to state \(y \), corresponding to a more complete intermediate solution. Thus, each ant \(k \) computes a set \(A_k(x) \) of feasible expansions to its current state in each iteration, and moves to one of these in probability. For ant \(k \), the probability \(p_{xy}^k \) of moving from state \(x \) to state \(y \) depends on the combination of two values, viz., the attractiveness \(\eta_{xy} \) of the move, as computed by some heuristic indicating the \textit{a priori} desirability of that move and the trail level \(T_{xy} \) of the move, indicating how proficient it has been in the past to make that particular move.

The trail level represents a posteriori indication of the desirability of that move. Trails are updated usually when all ants have completed their solution, increasing or decreasing the level of trails corresponding to moves that were part of “good” or “bad” solutions, respectively.

In general, the \(k \)th ant moves from state \(x \) to state \(y \) with probability

\[
p_{xy}^k = \frac{(\tau_{xy}^\alpha)(\eta_{xy}^\beta)}{\sum_{y \in \text{allowed}_y} (\tau_{xy}^\alpha)(\eta_{xy}^\beta)}
\]

where \(\tau_{xy} \) is the amount of pheromone deposited for transition from state \(x \) to \(y \), \(0 \leq \alpha \) is a parameter to control the influence of \(\tau_{xy} \), \(\eta_{xy} \) is the desirability of state transition \(xy \) (\textit{a priori} knowledge, typically \(1/d_{xy} \), where \(d \) is the distance) and \(\beta \geq 1 \) is a parameter to control the influence of \(\eta_{xy} \). \(T_{xy} \) and \(\eta_{xy} \) represent the attractiveness and trail level for the other possible state transitions.
2) Pheromone update

When all the ants have completed a solution, the trails are updated by
\[
\tau_{xy} \leftarrow (1 - \rho) \tau_{xy} + \sum_k \Delta \tau_{xy}^k
\]
where \(\tau_{xy}\) is the amount of pheromone deposited for a state transition \(xy\), \(\rho\) is the pheromone evaporation coefficient and \(\Delta \tau_{xy}^k\) is the amount of pheromone deposited by \(k\)th ant, typically given for a TSP problem (with moves corresponding to arcs of the graph) by
\[
\Delta \tau_{xy}^k = \begin{cases}
Q/L_k & \text{if ant } k \text{ uses curve } xy \text{ in its tour} \\
0 & \text{otherwise}
\end{cases}
\]
where \(L_k\) is the cost of the \(k\)th ant's tour (typically length) and \(Q\) is a constant [9].

C. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique. It was developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO gets better results in a easier, faster, cheaper way compared with other methods. There are few parameters to adjust. One version, with slight variations, works well in a wide variety of applications. It has been used for approaches that can be used across a wide range of applications, as well as for specific applications focused on a specific requirement.

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. Compared to GA, the advantages of PSO are that PSO is easy to implement and there are few parameters to adjust.

There are two popular swarm inspired methods in computational intelligence areas: Ant colony optimization (ACO) and particle swarm optimization (PSO). ACO was inspired by the behaviors of ants and has many successful applications in discrete optimization problems. The particle swarm concept originated as a simulation of simplified social system. The original intent was to graphically simulate the choreography of bird of a bird block or fish school. However, it was found that particle swarm model can be used as an optimizer.

Suppose the following scenario: a group of birds are randomly searching food in an area. There is only one piece of food in the area being searched. All the birds do not know where the food is. But they know how far the food is in each iteration. So what's the best strategy to find the food? The effective one is to follow the bird which is nearest to the food.

PSO learned from the scenario and used it to solve the optimization problems. In PSO, each single solution is a "bird" in the search space. We call it "particle". All of particles have fitness values which are evaluated by the fitness function to be optimized, and have velocities which direct the flying of the particles. The particles fly through the problem space by following the current optimum particles.

PSO is initialized with a group of random particles (solutions) and then searches for optima by updating generations. In every iteration, each particle is updated by following two "best" values. The first one is the best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle in the population. This best value is a global best and called gbest. When a particle takes part of the population as its topological neighbors, the best value is a local best and is called lbest.

After finding the two best values, the particle updates its velocity and positions with following equation (a) and (b).

\[
v[i] = v[i] + c1*rnd()*(pbest[i] - present[i]) + c2*rnd() * (gbest - present[i]) \quad (a)
\]

where \(v[i]\) is the particle velocity, \(p[i]\) is the current particle (solution), \(pbest[i]\) and \(gbest\) are defined as stated before. \(rnm()\) is a random number between (0,1). \(c1, c2\) are learning factors. usually \(c1 = c2 = 2\).

While maximum iterations or minimum error criteria is not attained

Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If the sum of accelerations would cause the velocity on that dimension to exceed Vmax, which is a parameter specified by the user. Then the velocity on that dimension is limited to Vmax [10].

III. RESULT

After the implementation of optimised NTRU cryptosystem using ACO and PSO Algorithm, we compared these cryptosystems with some pre-existing fast Symmetric and Asymmetric Cryptosystems. In these algorithms DES is
a very fast Symmetric Cypher. RSA is the most popular oldest Asymmetric Cypher and NTRU is faster than RSA. The comparison table is as shown below:

Table 1: Comparison of various cryptosystems with optimized NTRU for different length of messages with respect to simulation time in seconds.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Crypto system</th>
<th>3 bytes</th>
<th>85 bytes</th>
<th>117 bytes</th>
<th>362 bytes</th>
<th>1432 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DES</td>
<td>0.109</td>
<td>0.344</td>
<td>0.437</td>
<td>1.235</td>
<td>7.735</td>
</tr>
<tr>
<td>2.</td>
<td>RSA</td>
<td>0.89</td>
<td>0.984</td>
<td>1.125</td>
<td>1.953</td>
<td>4.422</td>
</tr>
<tr>
<td>3.</td>
<td>NTRU</td>
<td>0.344</td>
<td>0.437</td>
<td>0.500</td>
<td>0.906</td>
<td>2.687</td>
</tr>
<tr>
<td>4.</td>
<td>NTRU (ACO)</td>
<td>0.172</td>
<td>0.256</td>
<td>0.370</td>
<td>0.725</td>
<td>1.723</td>
</tr>
<tr>
<td>5.</td>
<td>NTRU (PSO)</td>
<td>0.169</td>
<td>0.213</td>
<td>0.32</td>
<td>0.625</td>
<td>1.682</td>
</tr>
</tbody>
</table>

From the above table it is clear that when we optimize NTRU using ACO we are getting higher speed as compared to conventional NTRU but we are getting much higher speed when we optimize NTRU using PSO algorithm. We can also calculate the percentage increase in speed of the optimized NTRU as compared to the conventional NTRU for different length of messages as shown in the table below.

Table 2: Percentage increase in speed of the optimized NTRU as compared to the conventional NTRU for different length of messages

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Crypto system</th>
<th>3 bytes</th>
<th>85 bytes</th>
<th>117 bytes</th>
<th>362 bytes</th>
<th>1432 bytes</th>
<th>Average percentage increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NTRU</td>
<td>0.344</td>
<td>0.437</td>
<td>0.500</td>
<td>0.906</td>
<td>2.687</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>NTRU (ACO)</td>
<td>0.172</td>
<td>0.256</td>
<td>0.370</td>
<td>0.725</td>
<td>1.723</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>NTRU (PSO)</td>
<td>0.169</td>
<td>0.213</td>
<td>0.32</td>
<td>0.625</td>
<td>1.682</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>NTRU and NTRU (ACO)</td>
<td>50%</td>
<td>41.42%</td>
<td>26.0%</td>
<td>19.98%</td>
<td>35.88%</td>
<td>34.65%</td>
</tr>
<tr>
<td>5.</td>
<td>NTRU and NTRU (PSO)</td>
<td>50.87%</td>
<td>51.26%</td>
<td>36%</td>
<td>31.01%</td>
<td>37.4%</td>
<td>41.31%</td>
</tr>
</tbody>
</table>

From the above table the average percentage increase in speed of NTRU using ACO algorithm is 34.65% as compared to conventional NTRU. Also the table shows that the average percentage increase in speed of NTRU using PSO algorithm is 41.31% as compared to conventional NTRU.

IV. CONCLUSION

In this paper we implemented some fast Symmetric and Asymmetric cryptosystems i.e. DES, RSA and NTRU in MATLAB. In order to construct a highly secure speedy cryptosystem we optimized NTRU using Ant Colony Optimization Algorithm and Particle Swarm Optimization Algorithm separately. We also implemented these algorithms in MATLAB. After implementation we compared the simulation time of these cryptosystems for different size of text files. We found that the optimized NTRU using PSO algorithm is having the minimum simulation time. We also compared the percentage increase in speed of optimized NTRU with the conventional NTRU. We found that the increase in speed of optimized NTRU using ACO is 34.65% on average. Also the increase in speed of optimized NTRU using PSO is 41.31% on average. This comparison shows that the optimized NTRU using Particle Swarm Optimization algorithm is performing the best with respect to simulation time.

V. REFERENCES

[8] From Wikipedia browsed on 15.7.14
[9] from Wikipedia browsed on 11.1.15
Himani Agrawal is associate professor in Electronics and Telecommunication Department at SSGI, FET, Bhilai. She is pursuing her Ph.D. from Dr. C.V. Raman University, Bilaspur. Her area of specialization is Cryptography. She has published about 30 research papers in various national and international journals.

Dr.(Mrs.) Monisha Sharma is Professor in Electronics and Telecommunication Department at SSGI, FET, Bhilai. She has done her Ph.D. from CSVTU, Bhilai. Her area of specialization is secure communication. She has published hundreds of research papers in various national and international journals and conferences.