High Speed, Low Power And Area Efficient Carry-Select Adder

Nelanti Harish
M.tech .VLSI Design
Electronics and Communication Department
SRM university, Chennai
Tamil Nadu

Mrs.V.Sarada
Asst.prof (Sr.grade)
Electronics and Communication Department
SRM university, Chennai
Tamil Nadu

Abstract- Low power, area efficient and high performance VLSI system are used in portable and mobile devices , wireless receivers, and biomedical instrumentation. An adder is the main component of an arithmetic unit. A complex digital signal processing (DSP) system involves several adders. An efficient adder design essentially improves the performance of a complex DSP system. general types of adder are RCA , Conventional CSLA, BEC-Based CSLA. Carry Select Adder (CSLA) is one of the fastest adders used in many data-processing processors to perform fast arithmetic functions. From the structure of the CSLA, it is clear that there is scope for reducing the area and power consumption in the CSLA. This work uses a simple and efficient gate-level modification to significantly reduce the area and power of the CSLA. the logic operation involved in conventional carry select adder (CSLA) and binary to excess-1 converter (BEC)-based CSLA are analyzed to study the data dependence and to identify redundant logic operations. We have eliminated all the redundant logic operations present in the conventional CSLA and proposed a new logic formulation for CSLA. In this method we use different sub modules half sum generation ,carry generation-0,carry generation-1,carry selection and full sum generation and the carry select (CS) operation is scheduled before the calculation of final-sum, due to this circuit will generate small delay, less power and less area.

Index Terms- Adders, Binary Excess Converter (BEC), Carry Select Adder (CSLA), Logic gates.

I. Introduction

Design of area- and power-efficient high-speed data path logic systems are one of the most substantial areas of research in VLSI system design. Concatenating the N full adders forms N bit Ripple carry adder. In this carry out of previous full adder becomes the input carry for the next full adder. It calculates sum and carry according to the following equations. As carry ripples from one full adder to the other, it traverses longest critical path and exhibits worst-case delay.

\[S_i = A_i \oplus B_i \oplus C_i \]

\[C_{i+1} = A_i B_i + (A_i + B_i)C_i \]

where \(i = 0, 1, ..., n-1 \)

FIG:1 Ripple carry adder

RCA is the slowest in all adders (O (n) time) but it is very compact in size (O (n) area). If the ripple carry adder is implemented by concatenating N full adders, the delay of such an adder is 2N gate delays from Cin to Cout. The delay of adder increases linearly with increase in number of bits. Block diagram of RCA is shown in figure 1. In digital adders, the speed of addition is limited by the time required to propagate...
a carry through the adder. The sum for each bit position in an elementary adder is generated sequentially only after the previous bit position has been summed and a carry propagated into the next position. The CSLA is used in many computational systems to alleviate the problem of carry propagation delay by independently generating multiple carries and then select a carry to generate the sum [1]. However, the CSLA is not area efficient because it uses multiple pairs of Ripple Carry Adders (RCA) to generate partial sum and carry by considering carry input Cin = 0 and Cin = 1, then the final sum and carry are selected by the multiplexers (mux). The basic idea of this work is to use Binary to Excess-1 Converter (BEC) instead of RCA with Cin = 1 in the regular CSLA to achieve lower area and power consumption [2]–[4]. The main advantage of this BEC logic comes from the lesser number of logic gates than the n-bit Full Adder (FA) structure. proposed a square-root (SQRT)-CSLA to implement large bit-width adders with less delay. In a SQRT CSLA, with increasing size are connected in a cascading structure. The main objective of SQRT-CSLA design is to provide a parallel path for carry propagation that helps to reduce the overall adder delay. Ramkumar and Kittur [6] suggested a binary to BEC-based CSLA. The BEC-based CSLA involves less logic resources than the conventional CSLA, but it has marginally higher delay. A CSLA based on common Boolean logic (CBL) is also proposed in [7] and [8]. The CBL-based CSLA of [7] involves significantly less logic resource than the conventional CSLA but it has longer CPD, which is almost equal to that of the RCA. To overcome this problem, a SQRT-CSLA based on CBL was proposed in [8]. However, the CBL-based SQRT-CSLA design of [8] requires more logic resource and delay than the BEC-based SQRT-CSLA of [6]. We observe that logic optimization largely depends on availability of redundant operations in the formulation, whereas adder delay mainly depends on data dependence. In the existing designs, logic is optimized without giving any consideration to the data dependence. In this brief, we made an analysis on logic operations involved in conventional and BEC-based CSLAs to study the data dependence and to identify redundant logic operations. Based on this analysis, we have proposed a logic formulation for the CSLA. The main contribution in this brief are logic formulation based on data dependence and optimized carry generator (CG) and CS design. Based on the proposed logic formulation, we have derived an efficient logic

II. Existing System

To reduce the area and power consumption Binary Excess-1 converter instead of RCA with Cin = 1. To reduce delay compared to regular SQRT CSLA. To replace the n-bit RCA, an n+1 bit BEC is required. A structured and the function table of a 4-b BEC are shown in fig 3, respectively. Fig 4 illustrates how the basic function of the CSLA is obtained by using the 4-bit BEC together with the mux. One input of the 8:4 mux gets as it input (B3,B2,B1, and B0) and another input of the mux is the BEC output. This produces the two possible partial results in parallel and the mux is used to select either the BEC output or the direct inputs according to the control signal cin. The Boolean expressions of the 4-bit BEC is listed as [5]

\[
X_0 = \overline{B_0} \\
X_1 = B_0 \oplus B_1 \\
X_2 = B_2 \oplus (B_0 \& B_1) \\
X_3 = B_3 \oplus (B_0 \& B_1 \& B_2)
\]

Fig: 2 conventional CSLA

Fig: 3 BEC-1(Binary to excess-one convertor) circuit
III. PROPOSED ADDER DESIGN

Design consists of one HSG unit, one FSG unit, one CG unit, and one CS unit. The CG unit is composed of two CGs (CG0 and CG1) corresponding to input-carry ‘0’ and ‘1’. The HSG receives two n-bit operands (A and B) and generate half-sum and half-carryword c0 of width n-bits each. Both CG0 and CG1 receive s0 and c0 from the HSG unit and generate two n-bit full-carry words c0 and c1 corresponding to input-carry ‘0’ and ‘1’, respectively. The logic diagram of the HSG unit is shown in Fig. 5. The logic circuits of CG0 and CG1 are optimized to take advantage of the fixed input-carry bits. The optimized designs of CG0 and CG1 are shown in Fig. 6 and 7, respectively, of s0(i) and c0(i), for 0 ≤ i ≤ n-1. This feature is used for logic optimization of the CS unit. The optimized design of the CS unit is shown in Fig. 8, which is composed of n AND–OR gates. The final carry word c is obtained from the CS unit. The MSB of c is sent to output as Cout, and (n-1) LSBs are XOR with (n-1) MSBs of half-sum (s0) in the FSG [shown in Fig. 9] to obtain (n-1) MSBs of final-sum (s). The LSB of s0 is XORed with Cin to obtain the LSB of s. [1]
Fig:7 half sum generation

Fig:8 carry generation-0

Fig:9 carry generation -1

Fig:10 carry selection Unit

Fig:11 full sum generation

Fig:12 Simulated result of SQRT CSLA
Fig.13 synthesize result of SQRT CSLA

IV. Performance Comparison

We have coded the SQRT-CSLA in VHDL using the proposed CSLA design and the existing CSLA designs of [6] and [7] for bit-widths 16. All the designs are synthesized in the xilinx tool.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BEC-based CSLA (16-bit)</th>
<th>SQRT-CSLA (16-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay(ns)</td>
<td>5.99(ns)</td>
<td>5.73(ns)</td>
</tr>
<tr>
<td>No of Slice LUT's used</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>Total slice LUT's present</td>
<td>63400</td>
<td>63400</td>
</tr>
<tr>
<td>Number of bonded I/O's used</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Number of bonded I/O's</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>Power(mW)</td>
<td>82.16(mW)</td>
<td>77.23(mW)</td>
</tr>
</tbody>
</table>

TABLE 1 Comparison of BEC-based CSLA and SQRT-CSLA

Conclusion

the logic operations involved in the conventional and BEC-based CSLAs to study the data dependence and to identify redundant logic operations. We have eliminated all the redundant logic operations of the conventional CSLA and proposed a new logic formulation for the CSLA. In the proposed scheme, the CS operation is scheduled before the calculation of final-sum, which is different from the conventional approach. Carry words corresponding to input-carry ‘0’ and ‘1’ generated by the CSLA based on the proposed scheme follow a specific bit pattern, which is used for logic optimization of the CS unit. Fixed input bits of the CG unit are also used for logic optimization. Based on this, an optimized design for CS and CG units are obtained. Using these optimized logic units, an efficient design is obtained for the CSLA. A simple approach is to reduce the area and power of CSLA architecture. The reduced number of gates of this work offers the great advantage in the reduction of area and also the power. The modified CSLA architecture is, low area, low power, simple and efficient for VLSI hardware implementation.

References