
 ISSN: 2278 – 7798
International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 5, Issue 6, June 2016

1941

All Rights Reserved © 2016 IJSETR

Abstract— Good tested designing of the system maximizes

its performance and lowers the development cost. This paper

focuses on the model-based test-driven development of

embedded systems using modeling languages. The test driven

embedded system development using modeling languages is

more efficient to reduce cost of testing. Testing early in the

design phase ensure that the software uses the full capability of

the hardware and thus avoids the redesign of hardware. Model

driven designing and test driven development using modeling

languages can be used to create reliable embedded software

code for safety-critical and security-critical embedded systems.

Index Terms— Embedded System, Model driven designing,

Test driven development.

I. INTRODUCTION

An embedded system is a specifically designed computing

device which is used inside of a device. For example, an

embedded system in a microwave oven accepts user input

from the panel, manages the LCD display, and controls the

heating elements of microwave. Embedded systems generally

use microprocessors that contain many functions of a

computer on a single device (i.e. System-on-chip).

Embedded software is often integrated in highly complex

devices. Medical device software, automotive software,

avionics software, military software and railway software are

all used to control devices or vehicles on which people's lives

depend. A fault in that software may not just be inconvenient,

it could be disastrous. The many of embedded software

developers uses traditional programming languages such as

C and C++. It uses inbuilt processes and techniques in the

language to improve reliability and reduce security flaws.

However, the test driven development (TDD)[2] with model

driven architecture (MDA)[4] approach met with increasing

success. Embedded software development methodologies

historically have amended to concentrate on tools that

support the embedded software developer with system

configuration, integration, and particularly testing. In this

paper, we try to illustrate the use of modeling languages for

test driven development of embedded system. Models must

Manuscript received June, 2016.

 Pravin Y. Karmore, Research Scholar, Dept. of Electronics and

Computer Science, RTM Nagpur University, Nagpur, India, 9422815212.

Dr. Pradeep K. Butey, Dept. of Computer Science, Kamla Nehru

College,Nagpur India, 9422110365.

be articulated in a modeling language with a properly defined

grammar and semantics accomplish by expressing both static

structure and dynamic behavior at an abstract level removed

from the programming domain [11]. Through the Unified

Modeling Language (UML) and the Systems Modeling

Language (SysML) [1],[3],[7] provides a set of diagrams

with semantic meaning that enable users to communicate the

structure and behavior of a design.

II. RELATED WORK

A. Embedded System

An embedded system is a specialized microcontroller

based computing device used as a part of another system or

machine. Normally, an embedded system is built on a single

microprocessor board with the software stored in ROM.

Some common examples of applications of embedded

systems are telecommunications, automobiles, consumer

electronics, and plant control. Even though the application

domains are dissimilar from each other, they have universal

organization in functional configuration. A layered

embedded system structure, including application

programming interfaces, hardware-dependent software,

application software, and hardware platform is shown in

Figure 1 [5][6]. Application program interfaces are essential

for communication between the hardware-dependent

software (System Software) and the application layer of

software (Application programs). The hardware-dependent

software is attached with the external physical hardware and

network. Real-time Operating System (RTOS) and device

drivers are closely attached to the hardware platform of the

system. According to an application domain, performance

and size are the constraints that usually influence the

hardware platform. As per specific application, a processor

and memory system must meet a minimum requirement.

Figure 1 Architecture of an embedded system

Test Driven Development of Model Driven

Embedded Systems

Pravin Karmore, Pradeep Butey

ISSN: 2278 – 7798
 International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 5, Issue 5, May 2016

1942

All Rights Reserved © 2016 IJSETR

Figure 2 System-level design processes

B. Designing Embedded System

An embedded system designing includes main four steps

[7]. The basic steps are the following:

 Requirements specification

 Hardware and software partitioning

 Software design

 Hardware design

 Interface design

 System integration and test

System developers can derive required functions after

evaluating system requirements. These functions are

considered for allocation of hardware or software.

Development of hardware and software is done parallel with

the interface design. After development of all required

hardware and software components, they are integrated to

build a system and go ahead for the testing of system. The

system level design steps are shown in Figure 2.

III. OVERVIEW OF UML AND SYSML

The modeling using the Unified Modeling Language

(UML) and the Systems Modeling Language (SysML)

provides a rich set of diagrams with semantic meaning that

allow users to communicate the structure and behavior of a

design as well as maintain consistency across user views [8].

A. Unified Modeling Language

In software engineering, the Unified Modeling Language

(UML) [1] has become more popular and widely used as a

visual modeling language since 1997. Figure 3 depicts the

different types of diagrams available with the latest version of

UML. The latest version of UML allows the system developer

to create 14 types of diagrams. It is divided into two main

categories: structure diagram and behaviour diagram. The

structural information category has seven diagram types such

as profile, class, composite structure, component,

deployment, object and package. The second category is for

general types of behavior and used to create activity,

interaction, use case and state machine diagrams. Further,

interaction category has sequence, communication,

interaction overview and timing diagrams.

Figure 3The latest version of UML allows 14 types of diagrams

B. Systems Modeling Language

For additional system-engineering concepts in other

modeling tools ranging from Visio to Verilog used to model

and then integrated them. This will difficult in integrating as

per different viewpoints and obtaining traceability, therefore

the Object Management Group (OMG) decided to design

UML for systems engineering. In the year 2003, a

customized version of UML suitable for systems engineering

to be specially made by the OMG's System Engineering

Domain Special Interest Group (SE DSIG) for systems

engineering was intended to support modeling of a broad

range of systems, which may include data, hardware,

software, procedures, personnel, and facilities. As a result of

this, a consortium called SysML Partners proposed the

Systems Modeling Language (SysML) [3]. Initially, many

new diagrams were considered, but finally just two diagrams

the Requirements Diagram and the Parametric Equations

Diagram were considered.

1) Requirements Diagrams

The Requirements Diagram has an underlying

requirements model. SysML states: "The requirements

model illustrates the SysML support for describing textual

necessities and concerning them to the specification models,

analysis models, and design models. A requirement

represents the behavior, structure, and/or properties that a

system, component, or other model components must

satisfy.” [9]

2) Parametric Equations Diagrams

Parametric Equations Diagrams are usually used to model

properties and their relationships. The diagrams specify the

allowable range values for complex mathematical and logical

expressions as well as constraints. Generally a reference to

the language is used to state the expressions and constraints.

 ISSN: 2278 – 7798
International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 5, Issue 6, June 2016

1943

All Rights Reserved © 2016 IJSETR

Figure 4 Requirements diagram for vehicle

Figure 5 Parametric equations diagram for weapon and firing

The parametric model can include logical expressions,

differential equations such as {when Y=7 or X<1}, or other

constraints such as {Y< 3x+7}, expressed in a specific

language, such as MathML or a programming language.

Generally, parametric models are captured in analysis

models to support performance models; feedback and control;

and engineering models for safety, reliability, mass

properties, and design to cost [9]. The SysML specification of

a simplified model of the antilock braking system in the Car

is shown in Figure 6.

IV. MODEL DRIVEN DESIGN

Model driven design (MDD) is based on the efficient use of

models as a primary objective throughout the software

engineering life cycle. The main objective of MDD is to

provide a central role to functional models in the

specification, design, integration, and validation of software.

Model driven development uses models to represent a

system’s elements, the structural relationships between them

and their dynamic interactions and behavior. Modeling

structural relationship supports design exploration and

system partitioning. The modeling behavior and interactions

are required to verify designs by verifying models and for

code generation. But many embedded software developers

hesitate to accept the generated code. The rejection of code by

developers means loss of MDD advantages. Use of the MDD

approach means accepting automatic code generation from

models.

Figure 6 SysML specifications for antilock breaking system in the Car

 A properly defined grammar and semantics models is

capable of expressing both static structure and dynamic

behavior. Such type of models at an abstract level

differentiated from the programming domain must be

articulated in a modeling language. These languages divided

into two groups:

A. Vendor-specific language – It is developed and promoted

by a specific vendor of an MDD platform such as Esterel

from Esterel Technologies, MatLab and Simulink from

MathWorks, and the ASD language used in Verum Software

Technologies’ Analytical Software Design (ASD): Suite [10]

(see Figure 7 below). ASD Suite allows the system developer

to create an initial set of requirements. There is no

requirement of coding, testing, and refining each component

in separate steps. In view of this, the modeling tool identifies

both the external and internal performance of the elements

using its two basic model types: interface models and design

models.

B. Standardized languages – A group of interested industry

users and MDD platform vendors defined languages, which

are most commonly based on the Unified Modeling

Language (UML).

Figure 7 ASD: Suit Model Driven Design [10]

V. TEST DRIVEN DEVELOPMENT

Test driven development (TDD) provides various

advantages over the traditional software development/test

cycle. The test driven development using modeling provides

the developer to create an initial set of requirements. In TDD,

a developer finds out ways to build the system testable,

ISSN: 2278 – 7798
 International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 5, Issue 5, May 2016

1944

All Rights Reserved © 2016 IJSETR

designs as per the specifications, writes tests and builds,

testing strategies, and then writes the functional code to meet

the specified requirements of the test-spawned design [12]

[13].

Advantages of TDD in embedded software:

1. The code is always tested. Testing drives the design of

the code. The code is improved because of the

decoupling required to create testable code.

2. The system grows organically as more knowledge of the

system is gained. The tests are "living" documentation,

because the knowledge is gained in tests.

3. The developers can alter existing code or add new

features with confidence because automated regression

testing will reveal failures and unexpected results.

4. Because of the inconsistency of hardware and software

during development, bugs are due to software, hardware,

or a combination of the two.

5. The software bugs can be removed to such an extent that

it becomes easier to locate, by method of elimination, the

cause of the unexpected system.

VI. TESTING OF MODEL DRIVEN DESIGN

Using MDD, we can eliminate specification and design

errors early in the development cycle where they are cheapest

and easiest to rectify. It helps to increase the degree of

automation that can be applied to the development process by

means of automatic code generation. The test driven

development of MDD facilitate parallel hardware/software

design by enabling system models to be tested using a

simulated execution mechanism on development hosts before

the target system is available (see figure 8) [13]. Such a

development reduces the required testing effort by applying

automated formal verification methods to the functional

models in collaboration with simulating execution behavior

instead of relying solely on testing the implemented program

code [12].

A. Executable models

The MDD leads to design system rigorous and precise

enough to allow for code generation and test case generation,

in addition, executable models can be executed on the

development system by means of simulation very early in the

development life cycle. Executable model provides the rapid

and early feedback on specifications and requirements that

are tested with the actual requirements of the system. It

allows functional testing to perform on the development host

design without accessing software running on the target

machine. This is very important in case of parallel

development of hardware and software development. There

are two popular platforms are available, IBM’s Rational

Rhapsody and Graphics Bridge Point. Both use UML-based

modeling languages. The model can be “generated” into code

for the model-driven design which would run on an

embedded target. Using the high end tools, such as IBM

Rational Rhapsody, the structure and behavior of the

complete model-driven design can be automatically created

(see figure 9). The model execution with Rational Rhapsody

enables early design validation when bugs are less costly to

fix.

B. Scalability

The symbolical testing in early design phase examines the

overall state space of an embedded software design to identify

whether or not the particular properties hold under all

possible inputs. There are different approaches to for

different model driven design platforms.

Figure 8 Model driven testing of embedded system

Figure 9 Model execution with IBM Rational Rhapsody

Some MDD platforms limit the class of designs that can

be tested. For example, SCADE Suite of Esterel

Technologies deals with synchronous, deterministic designs.

A compositional verification approach by ASD of Verum

Software Technologies provides verification of entire system

component by component to prove the properties still hold

when the components are integrated to form the complete

system (see figure 9). Using this approach completely

concurrent and asynchronous design was properly tested for

compliance with the specified properties. It also describes the

absence of typical asynchronous and concurrent design bugs

such as race conditions, live locks and deadlocks. Simulation

and testing are normally useless at reducing such errors.

The MDD platforms widely used in the safety, security

and mission-critical domains such as rail transportation,

aerospace, automotive and military applications is gradually

increasing. If an MDD platform is used with sufficient

verification and testing facilities on design models, the unit

testing requirement can be reduced. The MDD standards

differentiate between the operational embedded software

changed as part of the system from the modeling tools used to

build that software. The different standards for safety-critical

embedded software often needs the tool users to carry out an

evaluation of the tool to classify it according to whether or

not the tool itself can introduce errors into the operational

embedded software and to perform an evaluation of the tool

against the appropriate criteria for safe and secure use.

 ISSN: 2278 – 7798
International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 5, Issue 6, June 2016

1945

All Rights Reserved © 2016 IJSETR

VII. CONCLUSION

Model driven design is an important system development

technique worth considering for embedded systems that have

safety, security, and/or reliability requirements. Test driven

approach to model driven design of embedded system has

potential development cost and time efficiencies and ability

to reduce the occurrence of software design flaws. The

consideration of the most appropriate MDD platform for a

particular component and for the overall system requires that

developers understand the major technical advantages and

disadvantages of available tools. The test driven embedded

system development using modeling languages is more

efficient to reduce cost of testing. Testing early in the design

phase ensure that the software uses the full capability of the

hardware and thus avoids the redesign of hardware. The

development of universal tool that can be used to model and

generate software code for all the needs of embedded system

development is the future work. The reliability is the major

issue for the development of safety-critical and

security-critical embedded system software development.

The care should be taken while selecting the tool for the

designing of such a system. In general, test driven models

that are developed using modeling language tools works as a

right path for the specified target.

REFRENCES

[1] Object Management Group. OMG Unified Modeling Language (OMG

UML), Infrastructure, Version 2.4.1; August 2011.www.sysml.org.

[2] Michael J. Karlesky, William I. Bereza, and Carl B. Erickson, Effective

Test Driven Development for Embedded Software, Ph.D. Thesis.

[3] SysML Object Management Group (OMG), 2003. UMLTM for Systems

Engineering Request For Proposal OMG Document: ad/03-03-41.

[4] Pravin Karmore and Pradeep Butey, Analysis of Model-based Testing

Methodology for Embedded Systems, International Journal of Advanced

Research in Computer Science and Software Engineering, Volume 6,

Issue 5, P.P 308-314, May 2016.

[5] Alberto Sangiovanni-Vincentelli and Grant Martin, “Platform-Based

Design and Software Design Methodology for Embedded Systems,” IEEE

Design & Test of Computers, November-December, 2001, pp.23-33.

[6] M. Sgroi, L. Lavagno, and A. SangiovanniVincentelli, “Formal Models

for Embedded Systems Design,” IEEE Design & Test of Computers,

April-June, 2000, pp.2-15.

[7] Byeongdo Kang, Young-Jik Kwon, Roger Y. Lee, “A Design and Test

Technique for Embedded Software”, Proceedings of the 2005 Third ACIS

IEEE Int'l Conference on Software Engineering Research, Management

and Applications (SERA’05), 2005.

[8] Matthew Hause, Francis Thom, and Alan Moore, “An overview of

Systems Modeling Language”, December 2005.

[9] Mellor SJ, Balcer MJ. Executable UML, A Foundation for Model-Driven

Architecture. Reading, MA, Addison-Wesley; 2002.

[10] Guy Broadfoot,Using model-driven development to reduce system

software security vulnerabilities, Verum Software Technologies, March

2014.

[11] Padma Iyenghar, ElkePulvermueller and Clemens Westerkamp,

“Towards Model-Based Test Automation for Embedded Systems Using

UML and UTP”, IEEE, ITFA, 2011.

[12] Deepak A. Mathaikutty, SumitAhuja and AjitDingankar, “Model-driven

Test Generation for System Level Validation”. IEEE, 1-4244-1480,

2007.

[13] David Astels, Test Driven Development: A Practical Guide, Upper

Saddle River, NJ: Prentice Hall PTR, 2003.

Authors Profile

 Pravin Y. Karmore pursuing Ph.D. in Computer

Science from RTM Nagpur University, Nagpur. He is

obtained Master in Computer Applications degree from

RTM Nagpur University, Nagpur. And M.Phil. degree in

Computer Science from Alagappa University, Karaikudi.

At present he is working as Assistant Professor at Dept. of

Computer Applications, Shri Ramdeobaba College of

Engineering and Management, Nagpur. His research area is Software

Engineering, Embedded Systems and Neural Networks.

Dr. Padeep K. Butey obtained M.Sc. degree and

PGDCS&A from RTM Nagpur University, Nagpur. He

obtained his Ph.D. degree in Computer Science from

RTM Nagpur University, Nagpur. Now he is working as

Associate Professor and Head at Dept. of Computer

Science, Kamla Nehru College, Nagpur. He has

published more than 35 research papers in various

national and international conferences and journals.

http://www.sysml.org/

