Implementation of Electronic Display Devices Interfacing Techniques

1Myat Mon Thein, 2Kyaw Soe Lwin

Abstract—This paper discusses PIC16F84A microcontroller applications to interface with electronic display devices. It consists of hardware and software tools to provide the development and transfer of program code from a personal computer to the microcontroller and evaluation of its execution on hardware circuit design have been implemented. Firstly, the paper focuses on the information of PIC16F84A microcontroller, programming and simulation using Proteus software. Then, it presents electronic display devices interfacing and circuit designs. Throughout the paper, a special attention is given to the interfacing techniques of PIC16F84A framework using various types of display devices useful in the electronic engineering education process.

Index Terms—PIC16F84A; Programming; Simulation; Engineering education process.

1) INTRODUCTION

Microcontrollers are useful to the many control applications that can be interfaced with other devices, such as sensors, motors, switches, keypads, displays and memory devices. Variety of interface methods have been developed to solve the complex problem of balancing circuit design criteria such as features, cost, size, weight, power consumption, reliability [1].

Many microcontroller designs typically combine multiple interfacing methods. In an unsophisticated form, a micro-controller system can be viewed as a system that reads from (monitors) inputs, performs processing and writes to (controls) outputs. The device is small, and controller suggests that the device can be used in control applications. Most of the microcontrollers are built into (or embedded in) the devices they control.

The name PIC initially referred to Peripheral Interface Controller, which is a family of microcontrollers made by Microchip technology. PIC microcontrollers take part in an essential role in electronic control systems. In this paper, PIC 16F84A has been implemented to interface with variety of display devices. There are some strong reasons that chosen to PIC 16F84A such as simple architecture, less amount of instructions etc. Figure (1) shows the PIC16F84A pin diagram.

The LEDs, 7-segment display and LCD are used as electronic display devices for displaying information in this paper. The PIC 16F84A belongs to the mid-range family of the PIC microcontroller devices. It has 18- pins and comes in various packages. But we are only concerned with the PDIP (Plastic Dual Inline Package) which is normally used by hobbyists. Following are the specifications of the PIC16F84A [3]:

- Only 35 instructions- which makes it a popular RISC (Reduced Instruction Set Computer)
 - Operating frequency- up to 20 MHz
 - 1k x 14 bits flash EEPROM program memory
 - 68 x 8 bits data RAM
 - 64 x 8 bits data EEPROM
 - 16 special function registers (SFRs)
 - Operating voltage- 2.0 to 5.5 volts
 - Low power, high speed technology

Figure 1: PIC16F84A and its pins description

They are grouped into two groups. Port A which contains 5 pins (17,18, 1.2 & 3) and Port B which contains 8 pins (6,7,8,9,10,11,12 & 13). There are two memory types in the PIC 16F84A. These are the program memory and the data memory. Each memory has its own bus, so that access to each memory can occur during the same oscillator cycle. For the PIC 16F84A, the first 1k x 14 (0000h-03FFh) are physically implemented.

2) Applied Software to PIC Microcontroller Circuits

Firstly, the programs are written in assembly language using MPLAB compiler software (shown in Figure 2). PICKit2 programmer software has utilized in order to transfers of program code from a personal computer to the microcontroller. The results of circuit design are simulated by Proteus software. An assembly language is the most-basic low-level programming language in which there is a very strong correspondence between the program’s statements and...
architecture’s machine code instructions. It requires less memory and execution time.

It allows hardware-specific complex job in an easier way. Data is represented in memory and other external devices in this language. Compilers and assemblers are used to converts both high-level languages and low-level (assembly) languages code into a compact machine code for storage in the PIC microcontroller’s memory. For the above reasons, assembly language is applied in this paper.

Figure 3 shows the Assembly program backbone of the MPLAB IDE Editor platform.

Proteus Software has utilized for Modeling and circuit simulation purposes. It also has the ability to simulate the interaction between software running on microcontroller and any analog or digital electronic connected to it. These circuits are designed with the help of Proteus software.

Applied Hardware Devices and Components;
- PC (Computer)
- PIC16F84A
- PICkit2 Programmer
- Breadboard and connection wires
- LEDs, 7-segment display, LCD, potentiometers, push button, oscillator, capacitors, resistor
- PICKit2 Programmer

PICKit2 is a family of programmers for PIC microcontrollers made by Microchip Technology. It is used to program and debug microcontrollers.

3) Interfacing Electronic Display Devices

Display devices are the output devices for presentation of information in text or image form. Controlling can be done by interfacing these displays with the controlling devices such as microcontrollers.

Interfacing with Light Emitting Diode (LED)

In PIC microcontroller circuit, it is used for displaying the status of microcontroller pins. There are two ways by we can connect LEDs to microcontroller unit. Those two ways are active high logic and active low logic. Active high logic means LED will be ON when port pin is 1 and LED will be OFF when pin is 0. Active low opposes to active high. The program presents below has been written to interface LED display. In this program, implement has done by setting PORTB to output mode and turn-on each LED.

```
LIST P=16F84A, R=DEC
__CONFIG H'3FF3' ;Configuration code for RC Osc.
INCLUDE <16F84A.INC>
#DEFINE BANK0 
BCF STATUS, 5
#DEFINE BANK1 
BSF STATUS, 5
COUNT EQU H'0C'
ORG 0
GOTO 5
ORG 5
CLRF COUNT ;Clear COUNT register
CLRF PORTA ;Clear PORTA register
CLRF PORTB ;Clear PORTB register
BANK1 ;Select BANK 1
CLRF TRISA ;make all PORTA pins as outputs 
CLRF TRISB ;make all PORTB pins as outputs
BANK0 ;Select BANK 0
GOTO LOOPIT 
DELAY DECFSZ COUNT,F
GOTO DELAY
RETURN
LOOPIT BSF PORTB,0 ;make RB0=1 to turn on LED LB0
CALL DELAY ;wait about 0.5 sec
BSF PORTB,1 ;make RB1=1 to turn on LED LB1
CALL DELAY ;wait about 0.5 sec
BSF PORTB,2 ;make RB2=1 to turn on LED LB2
CALL DELAY ;wait about 0.5 sec
BSF PORTB,3 ;make RB3=1 to turn on LED LB3
CALL DELAY ;wait about 0.5 sec
BSF PORTB,4 ;make RB4=1 to turn on LED LB4
CALL DELAY ;wait about 0.5 sec
BSF PORTB,5 ;make RB5=1 to turn on LED LB5
CALL DELAY ;wait about 0.5 sec
BSF PORTB,6 ;make RB6=1 to turn on LED LB6
CALL DELAY ;wait about 0.5 sec
BSF PORTB,7 ;make RB7=1 to turn on LED LB7
CALL DELAY ;wait about 0.5 sec
CLRF PORTB ;Clear PORTB to turn OFF all LEDs
CALL DELAY ;wait about 0.5 sec
GOTO LOOPIT ;Repeat again
END
```
Interfacing with Seven-Segment LED Display

In order to make event of up-counter using Common Cathode 7-segment display, following program is used to control a 7-segment display. The display is connected to PORTB. The program counts from 0 to 9 and then repeats each time a switch, connected to RA4 is pressed.

```
LIST P=16F84A, R=DEC
__CONFIG H'3FF1' ;Configuration code for XT Osc.

INCLUDE <P16F84A.INC>
ERRORLEVEL -302

#DEFINE BANK0 BCF STATUS,5
#DEFINE BANK1 BSF STATUS,5

COUNT EQU H'20'
COUNT1 EQU H'21'
COUNT2 EQU H'22'
COUNT3 EQU H'23'

ORG 0
GOTO 5
ORG 5

CLRF PORTA
MOVLW B'00111111' ;RA4 AS INPUT
MOVF PORTB
CLRF TRISB
MOVLW B'00010000' ;RA4 AS INPUT
MOVF TRISA

BANK0
BSF PORTA,0 ;Set RA0 to turn on Q1
GOTO MAIN

COMCATHODE ADDWF PCL,F
RETLW B'00111111' ;0
RETLW B'00000010' ;1
RETLW B'01011011' ;2
RETLW B'01001111' ;3
RETLW B'01100110' ;4
RETLW B'01011010' ;5
RETLW B'01111010' ;6
RETLW B'00000111' ;7
RETLW B'11111111' ;8
RETLW B'01101111' ;9

DELAY50 CLRF COUNT1; wait 50 ms
WAIT1 DECFSZ COUNT1,F

GOTO WAIT1
DECFSZ COUNT2,F
GOTO WAIT1
RETURN

GETKEY BTFS PORTA,4 ;Is RA4 =0?, is S4 pressed?
GOTO LOOP ;no-check again
CALL DELAY50 ;yes, wait 50 ms
INCW COUNT,F ;COUNT = COUNT + 1
MOVFW COUNT,W ;COUNT -> W
ADDLW 6 ;W = W + 6
BTFS STATUS,DC ;is DC = 0?
CLRF COUNT ;no-Clear COUNT

OUTPUT MOVF COUNT,W ;yes- COUNT --> W
CALL COMCATHODE ;Read COMANODE table
MOVF PORTB ;W --> PORTB
GOTO GETKEY ;Repeat again

END
```

Figure 7 shows the schematic diagram of the interfacing with seven segment display. Figure 9 shows the simulation results using Proteus software and Figure 8 shows tested circuit.
Interfacing with Dot Matrix LED Display

Interfacing can be done for LED matrix display with a microcontroller. Programming for the Dot Matrix has been done. Figure 10 shows the simulation results using Proteus software and tested circuit.

![Image of LED matrix display interfaced with PIC microcontroller](image1)

Figure 10: Interfacing the LED (7-segment) matrix display with PIC

Interfacing with Liquid Crystal Display (LCD)

LCDs are specially designed for specific applications to display graphic images. It has three selection lines and 8 data lines. By connecting the three selection lines and data lines with the microcontroller, the message can be displayed on LCD. Following program is the Assembly code for displaying a message on LCD Line 1 using 8-bit Interface.

```assembly
LIST P=16F84A, R=DEC
__CONFIG H'3FF3' ; Configuration code for RC Oscillator
INCLUDE <P16F84A.INC>
ERRORLEVEL 302
#DEFINE BANK0 BCF STATUS,5
#DEFINE BANK1 BSF STATUS,5
CBLOCK H'0C'
CNT1 DELAY1 DELAY2 ENDC
ORG 0 GOTO 5
ORG 5 CLRF CNT1 CLRF DELAY1 CLRF DELAY2 CLRF PORTA CLRF PORTB BANK1 CLRF TRISA CLRF TRISB BANK0 GOTO LONGDEL
FUNC_SET BCF PORTA,2 ; RA2=RS=0
BCF PORTA,1 ; RA1=R/W=0
MOVLF B'00110000'
MOVWF PORTB
CALL SHORTDEL
DISPLAY_ON BCF PORTA,2 ; RA2=RS=0
BCF PORTA,1 ; RA1=R/W=0
MOVLF B'00001111'
MOVWF PORTB
CALL PULSE_E
CALL SHORTDEL
CLRF CNT1
```

![Image of LCD display characters on breadboard](image2)

Figure 11: Display characters of LCD with PIC on breadboard

MESSAGE MOVF CNT1,W CALL TEXT_TABLE
BSF PORTA,2 ; RA2=RS=1
BCF PORTA,1 ; RA1=R/W=0
MOVWF PORTB
CALL PULSE_E
CALL SHORTDEL
INCF CNT1,W
XORLW H'14'
BTFSC STATUS,Z
GOTO STOP
INCF CNT1,F
GOTO MESSAGE
STOP GOTO STOP
SHORTDEL DECF -C, F
GOTO SHORTDEL
RETURN

PULSE_E BSF PORTA,0 ; RA0=E=HIGH
NO
BCF PORTA,0 ; RA0=E=LOW
RETURN

TEXT_TABLE ADDWF PCL,F
RETLW B'M' ; ASCII CODE FOR W
RETLW B'Y'
RETLW B'A'
RETLW B'T'
RETLW B'M'
RETLW B'O'
RETLW B'N'
RETLW B'R'
RETLW B'P'
RETLW B'T'
RETLW B'C'
RETURN

END
As shown in Figure 11, the three selected lines EN, R/W, RS will be used for controlling the LCD display. EN pin uses for enabling the LCD display for communicating with microcontroller. RS pin uses for register selection. R/W control line is low, the information on the data bus is being written to the LCD. When R/W is high, the program is effectively reading the LCD. R/W line will always be low. Figure 12 shows display characters of LCD with PIC by Proteus software.

4) CONCLUSION

Microcontrollers are useful to interface with I/O devices. LEDs, LCDs and seven-segment displays devices are interfaced. Many interfacing techniques have been developed to solve the complex problem for communicating with displays. Varieties of design techniques are interfaced using software and hardware implementations. The results of the paper show clear outcomes that make implementation more flexible and applicable to control systems that are found in the electronic education.

ACKNOWLEDGMENT

First of all, the authors would like to express their special thanks to Dr. Myo Thein Gyi, Union Minister of Education, the Republic of the Union of Myanmar, for his encouragement to do research works for regional development and applied science. The authors’ grateful thanks go to Dr. Kyaw Hlaing Oo, Acting Pro-Rector and Principal of Technological University (Sittwe) for his kind guidance, suggestion and directions throughout the preparation of research work, and valued motivations and encouragement as well. Finally, the authors are also sincerely thankful to our colleagues from the Department of Electronic Engineering, Technological University (Sittwe) offered strong moral and physical support.

REFERENCES